Answer
To understand this concept it is necessary to understand Newton's Second Law
According to Newtons Second law applied force is equal to rate of change of momentum of a body.
Mathematically,

here,
is rate of change of momentum with respect to time
It means If two eggs fall from same height,one on softer surface and other on hard surface that time the momentum of both eggs will remain equal at both the surfaces. But, impact time will be different. On hard surface egg will stop almost instantly so impact time will be small and hence the force on egg will be large therefore the egg will breakup.
On the other hand on the soft surface like a cotton, egg will not stop instantly but it will slow down for a few seconds and then stop due to which the time of impact will increase. Therefore the force on egg will be less and it won't break up.
Answer:
Perfectly inelastic collision
Explanation:
There are two types of collision.
1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.
2. Inelastic collision: When the momentum the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.
For a perfectly elastic collision, the two bodies stick together after collision.
Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.
Answer: yes.
Explanation: The light that will be incidented on that metal is visible light.
It depends on 3 factors:
1. The temperature
2. The specific heat capacity of the metal
3. The thermal conductivity of the metal.
The metal getting warmer also depend on the reflection and the absorption of light energy in which it will surely absorb some energy and not reflect all.
When visible light is absorbed by an object, the object converts the short wavelength light into long wavelength heat. This causes the object to get warmer.
Answer:
( a ) The specific volume by ideal gas equation = 0.02632 
% Error = 20.75 %
(b) The value of specific volume From the generalized compressibility chart = 0.0142 
% Error = - 34.85 %
Explanation:
Pressure = 1 M pa
Temperature = 50 °c = 323 K
Gas constant ( R ) for refrigerant = 81.49 
(a). From ideal gas equation P V = m R T ---------- (1)
⇒
= 
⇒ Here
= Specific volume = v
⇒ v = 
Put all the values in the above formula we get
⇒ v =
×81.49
⇒ v = 0.02632 
This is the specific volume by ideal gas equation.
Actual value = 0.021796 
Error = 0.02632 - 0.021796 = 0.004524 
% Error =
× 100
% Error = 20.75 %
(b). From the generalized compressibility chart the value of specific volume
= v = 0.0142 
The actual value = 0.021796 
Error = 0.0142 - 0.021796 = 
% Error =
× 100
% Error = - 34.85 %
Answer:
Maximum height the atmosphere pressure can support the
water=10.336 m
Explanation:
We know that ,

Case 1 - Mercury in the tube

Case 2 - Water in the tube

Since atmospheric pressure is same
.
or, 

∴ 
Hence height of the water column =10.336 m