Answer:
F = - 50 N
Hence, the magnitude of resultant force is 50 N and its direction is leftwards.
Explanation:
The magnitude of the resultant force is always equal to the sum of all forces. While, the direction of resultant force will be equal to the direction of the force with greater magnitude:

considering right direction to be positive:
F₁ = Force applied on right rope = 150 N
F₂ = Force applied on left rope = 200 N
Therefore, the resultant force can be found by using these values in equation:

<u>F = - 50 N</u>
<u>Hence, the magnitude of resultant force is 50 N and its direction is leftwards.</u>
The change in electric potential energy of the ion is equal to the charge multiplied by the voltage difference:

where the charge q of the na+ ion is equal to one positive charge, so it's equal to the proton charge:

, and Vf and Vi are the final and initial voltages.
Substituting the numbers, we find:
As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
Answer:
see explanation below
Explanation:
Given that,
500°C
= 25°C
d = 0.2m
L = 10mm = 0.01m
U₀ = 2m/s
Calculate average temperature

262.5 + 273
= 535.5K
From properties of air table A-4 corresponding to
= 535.5K 
k = 43.9 × 10⁻³W/m.k
v = 47.57 × 10⁻⁶ m²/s

A)
Number for the first strips is equal to


Calculating heat transfer coefficient from the first strip


The rate of convection heat transfer from the first strip is

The rate of convection heat transfer from the fifth trip is equal to


Calculating 

The rate of convection heat transfer from the tenth strip is


Calculating

Calculating the rate of convection heat transfer from the tenth strip

The rate of convection heat transfer from 25th strip is equal to

Calculating 

Calculating 

Calculating the rate of convection heat transfer from the tenth strip

Answer:
a = 3 m/s²
Explanation:
given,
mass of crate = 20 Kg
horizontal force on crate = 70 N
frictional force on the crate = 10 N
acceleration of crate = ?
now, calculating net force acting on the crate.
F = horizontal force - frictional force
F = 70 - 10
F = 60 N
net force on the crate is equal to 60 N.
We also know that
F = m a
60 = 20 x a
a = 3 m/s²
Hence, the acceleration of the crate is equal to 3 m/s²