Answer:D
Explanation:
Given
mass of A is twice the mass of B half the velocity of B
Suppose
and
be the average force exerted on A and B respectively
and According to Newton third law of motion Force on the body A is equal to Force on body B but opposite in direction as they are action and reaction force.
Thus
and option d is correct
Use this formula
Vf = sqrt(2gh)
Answer:
The total mechanical energy does not change if the value of the mass is changed. That is, remain the same
Explanation:
The total mechanical energy of a spring-mass system is equal to the elastic potential energy where the object is at the amplitude of the motion. That is:
(1)
k: spring constant
A: amplitude of the motion = 2.0cm
As you can notice in the equation (1), the total mechanical energy of the system does not depend of the mass of the object. It only depends of the amplitude A and the spring constant.
Hence, if you use a mass of 0.40kg the total mechanical energy is the same as the obtained with a mas 0.20kg
Remain the same
Answer:

Given:
Radius of ball bearing (r) = 1.5 mm = 0.15 cm
Density of iron (ρ) = 7.85 g/cm³
Density of glycerine (σ) = 1.25 g/cm³
Terminal velocity (v) = 2.25 cm/s
Acceleration due to gravity (g) = 980.6 cm/s²
To Find:
Viscosity of glycerine (
)
Explanation:


Substituting values of r, ρ, σ, v & g in the equation:






<span>Answer:The weight of the door creates a CCW torque given by
Tccw = 145 N*3.13 m / 2
You need a CW torque that's equal to that
Tcw = F*2.5 m*sin20</span>