Answer: 2R
Explanation:
Here the person travels пR distance. We know that the circumference of a circle is 2πR. So your imaginated person has traveled the distance which is half of the circumference of the circle. And this distance is equal to its diameter. We know that diameter of a circle is two times larger than the radius. So the person's displacement is two times of the radius, means 2R. [Here 'R' means the radius of the circle]
When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:
F = mg
Where,
m = mass
g = Gravitational acceleration
F = 5*9.8
F = 49N
Therefore the correct answer is E.
The position function x(t) of a particle moving along an x axis is 
a) The point at which particle stop, it's velocity = 0 m/s
So dx/dt = 0
0 = 0- 12t = -12t
So when time t= 0, velocity = 0 m/s
So the particle is starting from rest.
At t = 0 the particle is (momentarily) stop
b) When t = 0

SO at x = 4m the particle is (momentarily) stop
c) We have 
At origin x = 0
Substituting

t = 0.816 seconds or t = - 0.816 seconds
So when t = 0.816 seconds and t = - 0.816 seconds, particle pass through the origin.
Answer:
15,505 N
Explanation:
Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student
-ΔU = ΔK
-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²
-(0 - mgh) = 1/2mv² - 0
mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.
mgh = 1/2mv²
gh = 1/2v²
v² = 2gh
v = √(2gh)
v = √(2 × 9.8 m/s² × 1 m)
v = √(19.6 m²/s²)
v = 4.43 m/s
Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s
So Ft = m(v' - v)
F = m(v' - v)/t
substituting the values of the variables, we have
F = 70 kg(0 m/s - 4.43 m/s)/0.02 s
= 70 kg(- 4.43 m/s)/0.02 s
= -310.1 kgm/s ÷ 0.02 s
= -15,505 N
So, the force transmitted to her bones is 15,505 N