Answer:
Explanation:
area of square loop A = side²
= 8.4² x 10⁻⁴
A = 70.56 x 10⁻⁴ m²
when it is converted into rectangle , length = 14.7 , width = 2.1
area = length x width
= 14.7 x 2.1 x 10⁻⁴
= 30.87 x 10⁻⁴ m²
Let magnetic field be B
Change in flux = magnetic field x change in area
= B x ( 70.56 x 10⁻⁴ - 30.87 x 10⁻⁴ )
= 39.69 x 10⁻⁴ B
rate of change of flux = change in flux / time taken
= 39.69 x 10⁻⁴ B / 6.5 x 10⁻³
= 6.1 x 10⁻¹ B
emf induced = 6.1 x 10⁻¹ B
6.1 x 10⁻¹ B = 14.7 ( given )
B = 2.41 x 10
= 24.1 T
B ) magnetic flux is decreasing , so it needs to be increased as per Lenz's law . Hence current induced will be anticlockwise so that additional magnetic flux is induced out of the page.
To solve this problem it is necessary to apply the concepts related to Force of Friction and Torque given by the kinematic equations of motion.
The frictional force by definition is given by

Our values are here,



Replacing,

Consider the center of mass of the body half its distance from the floor, that is d = 0.85 / 2 = 0.425m. The torque about the lower farther corner of the refrigerator should be zero to get the maximum distance, then

Re-arrange for x,





Then we can conclude that 1.42m is the distance traveled before turning.
Answer:
A wavelength is a measure of distance between two consecutive crests or trough. So , the unit of wavelength is same as unit of distance. I.e metre
Given data:
mass of the bullet (m) = 25 g = 0.025 kg,
mass of the gun (M) = 0.9 kg,
speed of the bullet (v) =230 m/s,
speed of the bullet (V) = ?
From the given data it is clear that, the momentum is conserved. According to "<em>law of conservation of momentum" </em>the total momentum before and after the collision is equal.
In this problem the momentum before collision (bullet+gun) is zero.
Therefore, after the gun fires a bullet, the momentum must be zero.
Mathematically,
M × V + m × v = 0
where,
M × V = momentum of the gun
m × v = momentum of the bullet
(0. 9 × V) + (0.025 × 230) = 0
0.9 V = -5.75
V = -5.75/0.9
= -6.39 m/s
<em>The gun recoils with a speed of 6.39 m/s</em>
I believe the answer is H for when you bounce it, it has stress when it hits the floor and then goes up giving it kinetic