answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
2 years ago
12

One reason you should avoid taking risks as a driver is:

Physics
1 answer:
stepladder [879]2 years ago
7 0
The answer is A. 

All risks have the potential to cause death as a driver. You can harm yourself, others, or both when you take risks on the road. No one can predict what could happen next and when you drive, you do not only need to consider what you would do. You have to understand that behavior of other drivers and pedestrians is unpredictable.



You might be interested in
1) A fan is to accelerate quiescent air to a velocity of 8 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
azamat

Answer:

\dot{W} = 339.84 W

Explanation:

given data:

flow Q = 9 m^{3}/s

velocity = 8 m/s

density of air = 1.18 kg/m^{3}

minimum power required to supplied to the fan is equal to the POWER POTENTIAL of the kinetic energy and it is given as

\dot{W} =\dot{m}\frac{V^{2}}{2}

here \dot{m}is mass flow rate and given as

\dot{m} = \rho*Q

\dot{W} =\rho*Q\frac{V^{2}}{2}

Putting all value to get minimum power

\dot{W} =1.18*9*\frac{8^{2}}{2}

\dot{W} = 339.84 W

7 0
2 years ago
A target in a shooting gallery consists of a vertical square wooden board, 0.250 m on a side and with mass 0.750 kg, that pivots
Alenkasestr [34]

Here in this case since there is no torque about the hinge axis for the system of bullet and block then we can say that angular momentum of this system will remain conserved

L_i = L_f

mv \frac{L}{2} = (I_1 + I_2)\omega

here we will have

L = 0.250 m

v = 385 m/s

m = 1.90 gram

now moment of inertia of the plate will be

I_1 = \frac{ML^2}{3}

I_1 = \frac{0.750 (0.250)^2}{3} = 0.0156 kg m^2

I_2 = m(\frac{L}{2})^2 = 0.0019(0.125)^2 = 2.97 \times 10^{-5} kg m^2

now from above equation

0.0019 (385)(0.125) = (0.0156 + 2.97 \times 10^{-5})\omega

\omega = 5.85 rad/s

8 0
2 years ago
Consider the following:
pychu [463]

Answer:

They have different wavelengths.

They have different frequencies.

They propagate at different speeds through non-vacuum media depending on both their frequency and the material in which they travel.

Explanation:

The complete question is

Consider the following:

a) radio waves emitted by a weather radar system to detect raindrops and ice crystals in the atmosphere to study weather patterns;

b) microwaves used in communication satellite transmissions;

c) infrared waves that are perceived as heat when you turn on a burner on an electric stove;

d) the multicolor light in a rainbow;

e) the ultraviolet solar radiation that reaches the surface of the earth and causes unprotected skin to burn; and

f) X rays used in medicine for diagnostic imaging.

Which of the following statements correctly describe the various forms of EM radiation listed above?

check all that apply to the above

They have different wavelengths.

They have different frequencies.

They propagate at different speeds through a vacuum depending on their frequency.

They propagate at different speeds through non-vacuum media depending on both their frequency and the material in which they travel.

They require different media to propagate.

All the above phenomena are due the electromagnetic wave spectrum. Electromagnetic waves travel at a constant speed of 3 x 10^8 m/s in a vacuum. Within the spectrum, the different types of electromagnetic waves exists in different band range of frequencies and wavelengths unique to each of the waves, and the energy they carry. When these waves enter a non-vacuum medium, their speed change, depending on the nature of the material of the medium, and the frequency or the wavelength of the incoming wave.

5 0
2 years ago
A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633-nm li
babunello [35]

Answer:

0.00001266 m

Explanation:

D = Distance from source to screen

m = Order

d = Slit separation

The distance from a point on the screen to the center line

y=\frac{m\lambda D}{d}

At m = 0

y_0=0

y_1-y_0=35\ cm\\\Rightarrow y_1=35\ cm

At m = 1

y_1=\frac{1\times 633\times 10^{-9}\times 7}{d}\\\Rightarrow d=\frac{1\times 633\times 10^{-9}\times 7}{0.35}\\\Rightarrow d=0.00001266\ m

The slit separation is 0.00001266 m

3 0
2 years ago
A Porsche 944 Turbo has a rated engine power of 217hp . 30% of the power is lost in the drive train, and 70% reaches the wheels.
scZoUnD [109]

Explanation:

(a)  It is given that two-third of weight is over the drive wheels. So, mathematically, w = \frac{2}{3}mg.

Hence, maximum force is expressed as follows.

                F_{max} = \mu_{s} \times w

           m \times a_{max} = \mu_{s} (\frac{2}{3} mg)

Hence, the maximum acceleration is calculated as follows.

             a_{max} = \frac{2}{3} \mu_{s} \times g

                          = \frac{2}{3} \times 1.00 \times 9.8 m/s^{2}

                          = 6.53 m/s^{2}

Hence, the maximum acceleration of the Porsche on a concrete surface where μs = 1 is 6.53 m/s^{2}.

(b)  Since, 30% of the power is lost in the drive train. So, the new power is 70% of P_{max}.

That is,   new power = 0.7 \times P_{max}

Now, the expression for power in terms of force and velocity is as follows.

                      P = F_{max} \nu

              0.7 P_{max} = ma_{max} \nu

Therefore, speed of the Porsche at maximum power output is as follows.

            \nu = 0.7 \times \frac{P_{max}}{ma_{max}}

                      = 0.7 \times \frac{217 hp \times \frac{746 W}{1 hp}}{1500 kg \times 6.53 m/s^{2}}

                      = 11.568 m/s

                      = 11.57 m/s

Therefore, speed of the Porsche at maximum power output is 11.57 m/s.

(c)   The time taken will be calculated as follows.

             time = \frac{\text{velocity}}{\text{acceleration}}

                     = \frac{11.57 m/s}{6.53 m/s^{2}}

                     = 1.77 s

Therefore, the Porsche takes 1.77 sec until it reaches the maximum power output.

6 0
2 years ago
Other questions:
  • The wavelength of red light is 650 nanometers. how much bigger is the wavelength of a water wave that measures 2 meters?
    7·2 answers
  • postal worker on a bicycle travels at an average speed of 4m/s for 3 minutes. Work out how far she travelled.
    7·2 answers
  • A person driving a car applies the brakes. This produces friction, which stops the car. Into which type of energy is the mechani
    8·2 answers
  • Titanium metal requires a photon with a minimum energy of 6.94×10−19J to emit electrons. If titanium is irradiated with light of
    10·1 answer
  • A simple pendulum consists of a point mass suspended by a weightless, rigid wire in a uniform gravitation field. Which of the fo
    10·1 answer
  • On a guitar, the lowest toned string is usually strung to the E note, which produces sound at 82.4 82.4 Hz. The diameter of E gu
    12·1 answer
  • A 6.0-ω and a 12-ω resistor are connected in parallel across an ideal 36-v battery. What power is dissipated by the 6.0-ω res
    14·1 answer
  • I need help plz help me out 10 points!!!!!!!
    6·2 answers
  • A jeweler is determining the optical properties of an unknown blue gemstone. She uses an angle of incidence of 62°, and measures
    7·1 answer
  • Use the idea of density to explain why the dead creatures sink to the seabed​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!