Answer:
3/7 ω
Explanation:
Initial momentum = final momentum
I(-ω) + (2I)(3ω) + (4I)(-ω/2) = (I + 2I + 4I) ωnet
-Iω + 6Iω - 2Iω = 7I ωnet
3Iω = 7I ωnet
ωnet = 3/7 ω
The final angular velocity will be 3/7 ω counterclockwise.
Answer: F = 1391 N
Explanation:
The information given to you are:
Mass M = 1300 kg
Acceleration a = 1.07 m/s^2
The magnitude of the force striking the building will be
F = ma
Where
F = force
Substitute mass M and acceleration a into the formula
F = 1300 × 1.07
F = 1391 N
Therefore, the wrecking ball strikes the building with a force of 1391 N
The solution would be like this for this specific problem:
F = (G Me Mo) / Re^2
F / Mo = (G Me) / Re^2
G = gravitational constant
= 6.67384 * 10^-11 m3 kg-1 s-2
Me = 5.972 * 10^24 kg
Re^2 = (6.38 * 10^6)^2 m^2
= 40.7044 * 10^12 m^2 = 4.07044 * 10^13 m^2
G Me / Re^2 = (6.67384 * 10-11
* 5.972 * 10^24) / 4.0704 * 10^13 = 9.7196 m/s^2
9.7196 m/s^2 = acceleration
due to Earth’s gravity
Therefore, the value of the composite constant (Gme / r^2e) that is to be
multiplied by the mass of the object mo in the equation above is 9.7196
m/s^2.
Convection can best be observed as she blows the warm steam air that rises.
As the warm steam rises, she forces displaces it with cool air from her mouth. Because the warm steam is less dense it rises and because the cool air is more dense, it displaces the warm air.
This scenario is an example of convection.
Answer:

Explanation:
Induced EMF in the coil is given by the equation

so we have

also we know that rate of change in current in solenoid is given as

so induced EMF of coil is given as


now induced current in the coil will be given as


