answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
1 year ago
14

The air around a pool and the water in the pool receive equal amounts of energy from the sun. Why does the air experience a grea

ter increase in temperature than does the water?
A.
The specific heat of water is less than that of air.

B.
The specific heat of water is greater than that of air.

C.
The latent heat of water is less than that of air.

D.
The latent heat of water is greater than that of air.
Physics
1 answer:
labwork [276]1 year ago
4 0

Answer:

A

Explanation:

You might be interested in
A dinner plate falls vertically to the floor and breaks up into three pieces, which slide horizontally along the floor. immediat
koban [17]
<span>We'll use the momentum-impulse theorem. The x-component of the total momentum in that direction is given by p_(f) = p_(1) + p_(2) + p_(3) = 0.
  So p_(1x) = m1v1 = 0.2 * 2 = 0.4 Also p_(2x) = m2v2 = 0 and p_(3x) = m3v3 = 0.1 *v3 where v3 is unknown speed and m3 is the mass of the third particle with the unknown speed
 Similarly, the 235g particle, y-component of the total momentum in that direction is given by p_(fy) = p_(1y) + p_(2y) + p_(3y) = 0.
 So p_(1y) = 0, p_(2y) = m2v2 = 0.235 * 1.5 = 0.3525 and p_(3y) = m3v3 = 0.1 * v3 where m3 is third particle mass.
  So p_(fx) = p_(1x) + p_(2x) + p_(3x) = 0.4 + 0.1v3; v3 = 0.4/-0.1 = - 4
 Also p_(fy) = 0.3525 + 0.1v3; v3 = - 0.3525/0.1 = -3.525
  So v_3x = -4 and v_3y = 3.525.
 The speed is their resultant = âš (-4)^2 + (-3.525)^2 = 5.335</span>
4 0
1 year ago
Read 2 more answers
While it’s impossible to design a perpetual motion machine, that is, a machine that keeps moving forever, come up with ways to k
MissTica
A perpetual motion machine is (as the name implies) a machine that moves perpetually; it never stops. Ever. So if you created one today and set it going, it would keep on going until the Big Freeze<span>. Calling that “a long time” is an understatement of epic proportions</span>
7 0
1 year ago
Read 2 more answers
A merry-go-round with a a radius of R = 1.63 m and moment of inertia I = 196 kg-m2 is spinning with an initial angular speed of
kondor19780726 [428]

Answer:

1) L = 299.88 kg-m²/s

2) L = 613.2 kg-m²/s

3) L = 499.758 kg-m²/s

4) ω₁ = 0.769 rad/s

5) Fc = 70.3686 N

6) v = 1.2535 m/s

7) ω₀ = 1.53 rad/s

Explanation:

Given

R = 1.63 m

I₀ = 196 kg-m²

ω₀ = 1.53 rad/s

m = 73 kg

v = 4.2 m/s

1) What is the magnitude of the initial angular momentum of the merry-go-round?

We use the equation

L = I₀*ω₀ = 196 kg-m²*1.53 rad/s = 299.88 kg-m²/s

2) What is the magnitude of the angular momentum of the person 2 meters before she jumps on the merry-go-round?

We use the equation

L = m*v*Rp = 73 kg*4.2 m/s*2.00 m = 613.2 kg-m²/s

3) What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

We use the equation

L = m*v*R = 73 kg*4.2 m/s*1.63 m = 499.758 kg-m²/s

4) What is the angular speed of the merry-go-round after the person jumps on?

We can apply The Principle of Conservation of Angular Momentum

L in = L fin

⇒ I₀*ω₀ = I₁*ω₁

where

I₁ = I₀ + m*R²

⇒  I₀*ω₀ = (I₀ + m*R²)*ω₁

Now, we can get ω₁

⇒  ω₁ = I₀*ω₀ / (I₀ + m*R²)

⇒  ω₁ = 196 kg-m²*1.53 rad/s / (196 kg-m² + 73 kg*(1.63 m)²)

⇒  ω₁ = 0.769 rad/s

5) Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

We have to get the centripetal force as follows

Fc = m*ω²*R  

⇒  Fc = 73 kg*(0.769 rad/s)²*1.63 m = 70.3686 N

6) Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

we can use the equation

v = ω₁*R = 0.769 rad/s*1.63 m = 1.2535 m/s

7) What is the angular speed of the merry-go-round after the person lets go?

ω₀ = 1.53 rad/s

It comes back to its initial angular speed

8 0
1 year ago
Separating the electron from the proton in a hydrogen atom takes 2.18 ✕ 10−18 j of work. through what electric potential differe
My name is Ann [436]
Electric potential = work done/charge of electron = 2.18×10⁻¹⁸/1.6×10⁻¹⁹
                                                                              =  13.625 V
6 0
1 year ago
Light is propagated as a transverse wave. For this reason, sunglasses, ski goggles and camera lenses can restrict the vibration
Flura [38]

Polerization is the anwser

6 0
2 years ago
Read 2 more answers
Other questions:
  • Anne releases a stone from a height of 2 meters. She measures the kinetic energy of the stone at 9.8 joules at the exact point i
    14·2 answers
  • Tyson throws a shot put ball weighing 7.26 kg. At a height of 2.1 m above the ground, the mechanical energy of the ball is 172.1
    8·2 answers
  • Two boys want to balance a seesaw perfectly. One boy weighs 120 pounds and is sitting four feet from the fulcrum. The other boy
    7·1 answer
  • Given that the internal energy of water at 28 bar pressure is 988 kJ kg–1 and that the specific volume of water at this pressure
    7·1 answer
  • The temperature of a system drops by 30°F during a cooling process. Express this drop in temperature in K, R, and °C.
    14·1 answer
  • 5. How much does a suitcase weigh if it has a mass of 22.5 kg?
    10·2 answers
  • .A 0.2-kg aluminum plate, initially at 20°C, slides down a 15-m-long surface, inclined at a 30 angle to the horizontal. The forc
    14·1 answer
  • A motorcyclist heading east through a small Iowa town accelerates after he passes a signpost at x=0 marking the city limits. His
    15·1 answer
  • According to Faraday's law, a coil in a strong magnetic field must have a greater induced emf in it than a coil in a weak magnet
    9·1 answer
  • A coin released at rest from the top of a tower hits the ground after falling 1.5 s. What is the speed of the coin as it hits th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!