The formula for kinetic energy is

. Thus, the equation for velocity is

.
Answer:
Explanation:
Volume of block A = 10 x 6 x 1 = 60 cm³
Mass of block A = 630 g
density of mass A = mass / density
= 630 / 60 = 10.5g / cm³
Volume of block B = 5 x 5 x 3 = 75 cm³
Mass of block A = 604 g
density of mass A = mass / density
= 604 / 75 = 8.05 g / cm³
Since density of both A and B are less than that of mercury , both will float in mercury.
1.
Answer:
a) It is less
Explanation:
By energy conservation we can say that initial potential energy of both child must be equal to the final kinetic energy of the two child.
Since initially they are at same height so we will say that initial potential energy will be given as
and MgH
so the child with greater mass has more energy and hence smaller child will reach with smaller kinetic energy
2.
Answer:
b. The two speeds are equal.
Explanation:
As we know by mechanical energy conservation law we have


since both child starts at same height so here they both will reach the bottom at same speed
3.
Answer:
c. The two accelerations are equal
Explanation:
Since we know that average acceleration of the motion is given as

since here initial and final speeds are same so they both must have same average acceleration here.
Since I'm assuming that its perfectly elastic, considering there's not enough information given, so I think that no energy is dissipated in the collision
hmax = h - d + { [ mpvp - mb√(2gd) ] / (mp+mb) }² / (2g)
Answer:
The magnitude of the acceleration of the car is 35.53 m/s²
Explanation:
Given;
acceleration of the truck,
= 12.7 m/s²
mass of the truck,
= 2490 kg
mass of the car,
= 890 kg
let the acceleration of the car at the moment they collided = 
Apply Newton's third law of motion;
Magnitude of force exerted by the truck = Magnitude of force exerted by the car.
The force exerted by the car occurs in the opposite direction.

Therefore, the magnitude of the acceleration of the car is 35.53 m/s²