Answer:
When the speed of the bottle is 2 m/s, the average maximum height of the beanbag is <u>0.10</u> m.
When the speed of the bottle is 3 m/s, the average maximum height of the beanbag is<u> 0.43</u> m.
When the speed of the bottle is 4 m/s, the average maximum height of the beanbag is <u>0.87</u> m.
When the speed of the bottle is 5 m/s, the average maximum height of the beanbag is <u>1.25</u> m.
When the speed of the bottle is 6 m/s, the average maximum height of the beanbag is <u>1.86</u> m.
Sorry for not answering early on! If anyone in the future needs help, I got these answers from 2020 egenuity, though I can't post the picture for proof. Stay Safe!
Answer: The beaker containing pure water has decreased more.
Explanation:
In both cases, the decrease of water level is due to evaporation. We know that evaporation is a surface phenomenon. In the case of salt water, the salt molecules somewhat hinders the evaporation process of the water molecules and hence the salt water evaporates at a slower rate than pure water.
Hence, pure water level falls more.
Answer:
W = -510.98J
Explanation:
Force = 43N, 61° SW
Displacement = 12m, 22° NE
Work done is given as:
W = F*d*cosA
where A = angle between force and displacement.
Angle between force and displacement, A = 61 + 90 + 22 = 172°
W = 43 * 12 * cos172
W = -510.98J
The negative sign shows that the work done is in the opposite direction of the force applied to it.
Answer:
M = 0.730*m
V = 0.663*v
Explanation:
Data Given:

Conservation of Momentum:

Energy Balance:

Substitute Eq 2 into Eq 1

Using Eq 1

Answer:
2.13 s
Explanation:
Hi!
At t = 0s the rocket is at rest in its platform, so the intial speed is zero. I f the acceleration is A, then the height Y, and the speed V are:


We nedd to find time T during which the rocket engine provides upward acceleration. We know that:

With these 2 equations we can find A and T (dropping units for simplicity):
