answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
2 years ago
7

In grassland regions, rainy seasons and drought seasons determine, in part, the _____. kinds of resident organisms spread of fir

es average temperature location of fresh water streams
Physics
2 answers:
qaws [65]2 years ago
6 0

kinds of resident organisms
trasher [3.6K]2 years ago
6 0

The correct answer is option A

In grassland regions, rainy seasons the drought seasons determine, in part the kinds of resident organism.

The adaptions of the organism depends on the climatic and environmental conditions in which they live.

By knowing the environmental conditions of the place we get an idea of the organisms that survive there.

You might be interested in
The desperate contestants on a TV survival show are very hungry. The only food they can see is some fruit hanging on a branch hi
emmasim [6.3K]

Answer:

(a) v = 15m/a

(b) No they won't feast because the rock can only rise to a height of 11.5m which is less than 15m.

Explanation:

Please see the attachment below for film solution.

6 0
1 year ago
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
2 years ago
Substance X is placed in a container with substance Y. Both substances are fluids. Substance X initially sinks to the bottom of
Brut [27]

Answer: Option (A) is the correct answer.

Explanation:

Convection is a process in which heat transfers from a hotter substance to a colder substance.

As a result, the substance which is less dense will rise and the more denser substance will sink due to the influence of gravity.

Thus, we can conclude that in the given situation substance X will rise due to convection.

3 0
2 years ago
Read 2 more answers
A small ball of mass 2.00 kilograms is moving at a velocity 1.50 meters/second. It hits a larger, stationary ball of mass 5.00 k
rewona [7]

The kinetic energy of the small ball before the collision is

                             KE  =  (1/2) (mass) (speed)²

                                     = (1/2) (2 kg) (1.5 m/s)

                                     =    (1 kg)  (2.25 m²/s²)

                                     =        2.25 joules.

Now is a good time to review the Law of Conservation of Energy:

                     Energy is never created or destroyed. 
                     If it seems that some energy disappeared,
                     it actually had to go somewhere.
                     And if it seems like some energy magically appeared,
                     it actually had to come from somewhere.

The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision.  The large ball
and the small ball will just have to share the same 2.25 joules.

3 0
2 years ago
The inductor in a radio receiver carries a current of amplitude 200 mA when a voltage of amplitude 2.40 V is across it at a freq
White raven [17]

Answer:92

Explanation:

3 0
2 years ago
Other questions:
  • A pressure cooker is a pot whose lid can be tightly sealed to prevent gas from entering or escaping. even without knowing how bi
    14·1 answer
  • Light from a lamp is shining on a surface. how can you increase the intensity of the light on the surface?
    10·1 answer
  • Dr. Matthews has submitted a proposal to the institutional review board (IRB) of a university. At this university, she intends t
    14·1 answer
  • When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will _____
    8·2 answers
  • A helicopter is traveling at 86.0 km/h at an angle of 35° to the ground. What is the value of Ax? Round your answer to the neare
    9·2 answers
  • An 8.0-kg history textbook is placed on a 1.25-m high desk. How large is the gravitational potential energy of the textbook-Eart
    11·2 answers
  • Tapping the surface of a pan of water generates 17.5 waves per second. If the wavelength of each wave is 45 cm, what is the spee
    6·1 answer
  • An astronaut exploring a distant solar system lands on an unnamed planet with a radius of 2530 km. When the astronaut jumps upwa
    11·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • 13. Calculate the total heat energy in Joules needed to convert 20 g of substance X from -10°C to 70°C?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!