answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paraphin [41]
2 years ago
10

What is the absolute value of the horizontal force that each athlete exerts against the ground?

Physics
1 answer:
alexandr402 [8]2 years ago
6 0
Refer to the diagram shown below.

When an athlete is in motion, he/she exerts a vertical force (the person's weight, W) on the ground. The ground exerts an equal and opposite force, N, the normal reaction on the athlete, so that W = N.

At the same time, the ground exerts a horizontal force, F, o n the athlete so that he/she does not slip.
The magnitude of the horizontal force is
F = μN = μW
where μ = the dynamic coefficient of friction.

Answer:  
The horizontal force is μW,
where
W = the weight of the athlete and,
μ = the dynamic coefficient of friction.

You might be interested in
Assume that the particle has initial speed viviv_i. Find its final kinetic energy KfKfK_f in terms of viviv_i, MMM, FFF, and DDD
NeX [460]

Answer:

KE= 1/2mv²

Explanation:

The kinetic energy of a body is the energy possessed by virtue of the body in motion

Given the parameters

m which is the mass of the body

v which is the velocity of the body too

K.E = kinetic energy

The expression for the kinetic energy of a body is given as

KE= 1/2mv²

3 0
2 years ago
A stationary particle of charge q = 2.1 × 10-8 c is placed in a laser beam (an electromagnetic wave) whose intensity is 2.9 × 10
alisha [4.7K]
(a) The intensity of the electromagnetic wave is related to the amplitude of the electric field by
I= \frac{1}{2} c \epsilon_0 E^2
where
I is the intensity
c is the speed of light
\epsilon_0 is the electric permittivity
E is the amplitude of the electric field

By substituting the numbers of the problem and re-arranging the equation, we can find E:
E= \frac{2 I}{c \epsilon_0} = \frac{2 ( 2.9 \cdot 10^3 Wm^{-2})}{(3 \cdot 10^8 m/s)(8.85 \cdot 10^{-12} Fm^{-1})} =2.2 \cdot 10^6 N/C

Now that we have the intensity of the electric field, we can calculate the electric force on the charge:
F=qE=(2.1 \cdot 10^{-8} C)(2.2 \cdot 10^6 N/C)=0.046 N

(b) We can calculate the amplitude of the magnetic field starting from the amplitude of the electric field:
B= \frac{E}{c}= \frac{2.2 \cdot 10^6 N/C}{3 \cdot 10^8 m/s}=7.3 \cdot 10^{-3} T

The magnetic force is given by
F=qvB \sin \theta
where v is the particle's speed, B the magnetic field intensity and \theta the angle between B and v.
In this case the charge is stationary, so v=0, and so the magnetic force is zero: F=0.

(c) The electric force has not changed compared to point (a), because it does not depend on the speed of the particle, so we have again F=0.046 N.

(d) This time, the particle is moving with speed v=3.7 \cdot 10^4 m/s, in a direction perpendicular to the magnetic field (so, the angle \theta is 90^{\circ}), and so by using the intensity of the magnetic field we found in point (b), we can calculate the magnetic force on the particle:
F=qvB \sin \theta = (2.1 \cdot 10^{-8}C)(3.7 \cdot 10^4 m/s)(7.3 \cdot 10^{-3} T)(\sin 90^{\circ} )=
=5.7 \cdot 10^{-6} N
5 0
2 years ago
What is the magnitude of the force a 1.5 x 10-3 C charge exerts on a 3.2 x 10-4 C charge located 1.5 m away?
sweet [91]
The magnitude of the force<span> a 1.5 x 10-3 C charge exerts on a 3.2 x 10-4 C charge located 1.5 m away is 1920 Newtons. The formula used to solve this problem is:

F = kq1q2/r^2

where:
F = Electric force, Newtons
k = Coulomb's constant, 9x10^9 Nm^2/C^2
q1 = point charge 1, C
q2 = point charge 2, C
r = distance between charges, meters

Using direct substitution, the force F is determined to be 1920 Newtons.</span>
7 0
2 years ago
The magnetic field around a current-carrying wire is ________proportional to the current and _________proportional to the distan
PSYCHO15rus [73]

Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u>  proportional to the current and <u><em>inversely</em></u>  proportional to the distance from the wire.  If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.

Explanation:

Magnetic field around a long current carrying wire is given by

B=\frac{\mu _o I}{2\pi r}

where B= magnetic field

           \mu _o= permeability of free space

           I= current in the long wire and

           r= distance from the current carrying wire

Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u>  proportional to the current and <u><em>inversely</em></u>  proportional to the distance from the wire.  

Now if I'=3I and r'=2r then magnetic field B' is given by

B'=\frac{\mu _oI'}{2\pi r'}=\frac{\mu _o3I}{2\pi 2r}=1.5B

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.

   

7 0
2 years ago
Read 2 more answers
A uniform rectangular plate is hanging vertically downward from a hinge that passes along its left edge. By blowing air at 11.0
Serjik [45]

Answer:

The airspeed must be 7.78 m/s for the rectangular plate kept at 30°.

Explanation:

By looking at the images below wee see that the airspeed on one side of the rectangular plate decreases the statical pressure over this side. Since over the downside, the pressure still bein the atmospheric pressure. This difference in pressure produces a lift force in the plate. The list force is the net force obtained between the difference of the forces that produce the pressure over the upside and the downside:

F_{lift}=F_{up} - F_{dw}=0.5*p*V^2

Where up and down relate to what movement the forces produce. And p and V are the respective air density and velocity.

When the plate is kept horizontal the lift force balance the moment due to the weight of the plate and considering that both forces act at the same point:

F_{lift}=0.5*p*V^2=W

By replacing the known values it is possible to find the plate's weight:

F_{lift}=0.5*1.2 \frac{kg}{m^{3}}*(11 m/s)^2=W

W=72.6 N

When the plate kept to 30° from the vertical the moment equation balance is written as:

F_{lift}=0.5*p*V^2=W*sen(30\°)

The sine of 30° is due to the weight is 30° oriented, therefore the new value for the airspeed is:

V=\sqrt(W*sen(30\°)/0.5p)

V=\sqrt(\frac{72.6 N * 0.5}{0.5*1.2 kg/m^3})

V=\sqrt(60.5 \frac{N}{kg/m^3})

V=\sqrt(60.5 \frac{kg.m/s^2}{kg/m^3})

V=\sqrt(60.5 \frac{m^2}{s^2})

V= 7.78 m/s

7 0
2 years ago
Other questions:
  • The energy gaps between the valence and conduction bands are called band gaps. For silicon, the band gap is 1.1 eV; for fused si
    6·1 answer
  • This table shows Wayne’s weight on four different planets. Planet Wayne’s weight (pounds) Mars 53 Neptune 159 Venus 128 Jupiter
    9·1 answer
  • A block weighing 15 newtons is pulled to the top of an incline that is 0.20 meter above the ground, as shown below. if 4.0 joule
    14·1 answer
  • Which statements describe the characteristics of asteroids? Check all that apply. formed 4.6 billion years ago orbit the Sun bey
    7·2 answers
  • The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
    6·1 answer
  • Weddell seals make holes in sea ice so that they can swim down to forage on the ocean floor below. Measurements for one seal sho
    11·1 answer
  • A 1.0-m-diameter vat of liquid is 2.0 m deep. The pressure at the bottom of the vat is 1.3 atm. What is the mass of the liquid i
    6·1 answer
  • Albert presses a book against a wall with his hand. As Albert gets tired, he exerts less force, but the book remains in the same
    6·1 answer
  • Which statement best compares and contrasts two physical properties of matter?
    13·1 answer
  • Emmy kicks a soccer ball up at an angle of 45° over a level field. She watches the ball's trajectory and notices that it lands,
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!