answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sati [7]
2 years ago
14

A 50.-kilogram rock rolls off the edge of a cliff. if it is traveling at a speed of 24.2 m/s when it hits the ground, what is th

e height of the cliff?
Physics
1 answer:
ElenaW [278]2 years ago
5 0

The correct answer to the question is : 29.88 m.

EXPLANATION :

As per the question, the mass of the rock m = 50 Kg.

The rock is rolling off the edges of the cliff.

The final velocity of the rock when it hits the ground v = 24 .2 m/s.

Let the height of the cliff is h.

The potential energy gained by the rock at the top of the cliff = mgh.

Here, g is known as acceleration due to gravity, and g = 9.8\ m/s^2

When the rock rolls off the edge of the cliff, the potential energy is converted into kinetic energy.

When the rock hits the ground, whole of its potential energy is converted into its kinetic energy.

The kinetic energy of the rock when it touches the ground is given as -

                Kinetic energy K.E = \frac{1}{2}mv^2.

From above we know that -

   Kinetic energy at the bottom of the cliff = potential energy at a height h

                 \frac{1}{2}mv^2=\ mgh

                ⇒ v^2=\ 2gh

                ⇒ h=\ \frac{v^2}{2g}

                ⇒ h=\ \frac{(24.2)^2}{2\times 9.8}

                ⇒ h=\ 29.88\ m

Hence, the height of the cliff is 29.88 m

             


You might be interested in
g A projectile is launched with speed v0 from point A. Determine the launch angle ! which results in the maximum range R up the
Svetlanka [38]

Answer:

The range is maximum when the angle of projection is 45 degree.

Explanation:

The formula for the horizontal range of the projectile is given by

R = \frac{u^{2}Sin2\theta }{g}

The range should be maximum if the value of Sin2θ is maximum.

The maximum value of Sin2θ is 1.

It means 2θ = 90

θ = 45

Thus, the range is maximum when the angle of projection is 45 degree.

If the angle of projection is 0 degree

R = 0

It means the horizontal distance covered by the projectile is zero, it can move in vertical direction.

If the angle of projection is 30 degree.

R = \frac{u^{2}Sin60 }{9.8}

R = 0.088u^2

If the angle of projection is 45 degree.

R = \frac{u^{2}Sin90 }{g}

R = u^2 / g

5 0
2 years ago
Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in thi
morpeh [17]

Answer:

a) m = 993 g

b) E = 6.50 × 10¹⁴ J

Explanation:

atomic mass of hydrogen = 1.00794

4 hydrogen atom will make a helium atom = 4 × 1.00794 = 4.03176

we know atomic mass of helium = 4.002602

difference in the atomic mass of helium = 4.03176-4.002602 = 0.029158

fraction of mass lost = \dfrac{0.029158}{4.03176}= 0.00723

loss of mass for 1000 g = 1000 × 0.00723 = 7.23

a) mass of helium produced = 1000-7.23 = 993 g (approx.)

b) energy released in the process

E = m c²

E = 0.00723 × (3× 10⁸)²

E = 6.50 × 10¹⁴ J

4 0
2 years ago
Read 2 more answers
A woman fires a rifle with barrel length of 0.5400 m. Let (0, 0) be where the 125 g bullet begins to move, and the bullet travel
dybincka [34]

Answer:

Explanation:

Given that,

Length of barrel =0.54m

Mass of bullet=125g=0.125kg

Force extend

F=16,000+10,000x-26,000x²

a. Work done is given as

W= ∫Fdx

W= ∫(16,000+10,000x-26,000x² dx from x=0 to x=0.54m

W=16,000x+10,000x²/2 -26,000x³/3 from x=0 to x=0.54m

W=16,000x+5,000x²- 8666.667x³ from x=0 to x=0.54m

W= 16,000(0.54) + 5000(0.54²) - 8666.667(0.54³) +0+0-0

W=8640+1458-1364.69

W=8733.31J

The workdone by the gas on the bullet is 8733.31J

b. Work done is given as

Work done when the length=1.05m

W= ∫Fdx

W= ∫(16,000+10,000x-26,000x² dx from x=0 to x=1.05m

W=16,000x+10,000x²/2 -26,000x³/3 from x=0 to x=1.05m

W=16,000x+5,000x²- 8666.667x³ from x=0 to x=1.05mm

W= 16,000(1.05) + 5000(1.05²) - 8666.667(1.05³) +0+0-0

W=16800+5512.5-10032.75

W=12,279.75J

The workdone by the gas on the bullet is 12,279.75J

3 0
2 years ago
A material that has a fracture toughness of 33 MPa.m0.5 is to be made into a large panel that is 2000 mm long by 250 mm wide and
scoray [572]

Answer:

F_{allow} = 208.15kN

Explanation:

The word 'nun' for thickness, I will interpret in international units, that is, mm.

We will begin by defining the intensity factor for the steel through the relationship between the safety factor and the fracture resistance of the panel.

The equation is,

K_{allow} =\frac{K_c}{N}

We know that K_c is 33Mpa*m^{0.5} and our Safety factor is 2,

K_{allow} = \frac{33Mpa*m^{0.5}}{2} = 16.5MPa.m^{0.5}

Now we will need to find the average width of both the crack and the panel, these values are found by multiplying the measured values given by 1/2

<em>For the crack;</em>

\alpha = 0.5*L_c = 0.5*4mm = 2mm

<em>For the panel</em>

\gamma = 0.5*W = 0.5*250mm = 125mm

To find now the goemetry factor we need to use this equation

\beta = \sqrt{sec(\frac{\pi\alpha}{2\gamma})}\\\beta = \sqrt{sec(\frac{2\pi}{2*125mm})}\\\beta = 1

That allow us to determine the allowable nominal stress,

\sigma_{allow} = \frac{K_{allow}}{\beta \sqrt{\pi\alpha}}

\sigma_{allow} = \frac{16.5}{1*\sqrt{2*10^{-3} \pi}}

\sigma_{allow} = 208.15Mpa

So to get the force we need only to apply the equation of Force, where

F_{allow}=\sigma_{allow}*L_c*W

F_{allow} = 208.15*250*4

F_{allow} = 208.15kN

That is the maximum tensile load before a catastrophic failure.

4 0
2 years ago
A particular string resonates in four loops at a frequency of 320 Hz . Name at least three other (smaller) frequencies at which
goldfiish [28.3K]

Answer:

160 Hz  ,  240 Hz  , 400 Hz

Explanation:

Given that

Frequency of forth harmonic is 320 Hz.

Lets take fundamental frequency = f₁

f_1=\dfrac{320}{4}\ Hz

f₁=80 Hz

Frequency of first harmonic = f₂

f₂=2 f₁

f₂ =2 x 80 = 160 Hz

Frequency of second harmonic = f₃

f₃= 3 f₁=3 x 80 = 240 Hz

Frequency of fifth harmonic = f₅

f₅=  5 f₁= 5 x 80 = 400 Hz

Three frequencies are as follows

160 Hz  ,  240 Hz  , 400 Hz

6 0
2 years ago
Other questions:
  • The total energy of a 0.050 kg object travelling at 0.70 c is
    13·1 answer
  • A 0.70-m radius cylindrical region contains a uniform electric field that is parallel to the axis and is increasing at the rate
    11·2 answers
  • Consider a box sitting in the back of a pickup. The pickup accelerates to the right, and because the bed of the pickup is sticky
    8·2 answers
  • What voltage is delivered to a 120-volt/5,000-watt load that is fed with #10 awg wire (1.24 ohms/1,000 feet) and located 750 fee
    8·1 answer
  • Some fuel cells are powered by hydrogen. Scientists are looking into the decomposition of water (H2O) to make hydrogen fuel with
    13·2 answers
  • Image that the radiation emitted by the nitrogen at a frequency of 8.88×1014 Hz is absorbed by an electron in a molecule of meth
    9·2 answers
  • Physics students use a spring scale to measure the weight of a piece of lead. The experiment was performed two times: once in th
    15·1 answer
  • As a 15000 kg jet plane lands on an aircraft carrier, its tail hook snags a cable to slow it down. The cable is attached to a sp
    14·1 answer
  • "The predictions of Einstein’s Theory of General Relativity were tested on a double pulsar system in January of 2004. His equati
    11·1 answer
  • 1. The gravitational pull of the sun on Earth keeps Earth orbiting around the sun. Which statement is correct about the force th
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!