answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
1 year ago
15

The seeds were sown (change the voice)​

Physics
1 answer:
MaRussiya [10]1 year ago
7 0

Answer:

He sowed the seeds

Explanation:

While the question should have given the person who did the sowing for example the seeds were sown by him/ her/ the farmer/ or any name. Therefore, voice is given in passive and to change passive voice to active voice then the sentence will read as follows assuming that the seeds were sown by him

He sowed the seeds

You might be interested in
Consider a person standing in an elevator that is moving at constant speed upward. The person, of mass m, has two forces acting
larisa [96]

Answer:

The weight of the person has a smaller magnitude.

Explanation:

For an observer in inertial frame of reference for the person in the elevator Newton's Second Law can be written as

Normal reaction acts upwards

Weight acts downwards

\sum F_{v}=ma_{v}\\\\N-mg=m\times a_{v}\\\\m\times a_{v}> 0\\\\\therefore N-mg> 0\\\\\therefore N> mg

Here

N is the normal reaction force

mg is the weight of the person

g is acceleration due to gravity

4 0
2 years ago
Read 2 more answers
When 30 V is applied across a resistor it generates 600 W of heat: what is the magnitude of its resistance?
grandymaker [24]

Answer:

<h2>1.5 ohms</h2>

Explanation:

Power is expressed as P = V²/R

R = resistance

V = supplied voltage

Given P = 600W and V = 30V

R = V²/P

R = 30²/600

R = 900/600

R = 1.5ohms

magnitude of its resistance is 1.5ohms

3 0
2 years ago
Suppose we replace the mass in the video with one that is four times heavier. How far from the free end must we place the pivot
Llana [10]

We must place the pivot to keep the meter stick in balance at 90 cm (10 cm from the weight) from the free end.

Answer: Option B

<u>Explanation:</u>

In initial stage, the meter stick’s mass and mass hanged in meter stick at one end are same. Refer figure 1, the mater stick’s weight acts at the stick’s mid-point.

If in case, the meter stick is to be at balanced form, then the acting torques sum would be zero. So,

                  m \times g \times(x)+((m \times g)(x-50 \mathrm{cm}))=0

                  (m \times g \times x)-(50 \times m \times g)+(m \times g \times x)=0

Taking out ‘mg’ as common and we get

                  2 x-50=0

                  2 x=50

                  x=\frac{50}{2}=25 \mathrm{cm}

Hence, the stick should be pivoted at a distance of,

                 x^{\prime}=100 \mathrm{cm}-25 \mathrm{cm}=75 \mathrm{cm}

So, the stick should be pivoted at a distance of 75 cm at the free end

Now, replace mass with another mass. i.e., four times the initial mass (as given)

If in case, the meter stick is to be at balanced form, then the acting torques sum would be zero. So,

                   4 m g(x)+(m g)(x-50 c m)=0

                   4 m g x+m g x-50 m g=0

Taking out ‘mg’ as common and we get

                   5 x=50

                   x=\frac{50}{5}=10 \mathrm{cm}

Hence, the stick should be pivoted at a distance of,

                   x^{\prime}=100 \mathrm{cm}-10 \mathrm{cm}=10 \mathrm{cm}

So, the stick should be pivoted at a distance of 10 cm from the free end.

Therefore, the option B is correct 90 cm (10 cm from the weight).

3 0
2 years ago
A ball was kicked upward at a speed of 64.2 m/s. how fast was the ball going 1.5 seconds later
UNO [17]

Anything that's not supported and doesn't hit anything, and
doesn't have any air resistance, gains 9.8 m/s of downward
speed every second, on account of gravity.  If it happens to
be moving up, then it loses 9.8 m/s of its upward speed every
second, on account of gravity.

                (64.2 m/s)  -  [ (9.8 m/s² ) x (1.5 sec) ] 

            =  (64.2 m/s)  -       [      14.7 m/s      ]

            =             49.5 m/s  .  (upward)

7 0
2 years ago
A construction worker accidentally drops a brick from a high scaffold. a. What is the brick's velocity after 4.0 s? b. How far d
AlekseyPX

Answer:

A. 39.2 m/s

B. 78.4 m

Explanation:

Data obtained from the question include:

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

A. Determination of the brick's velocity.

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

Velocity (v) =?

v = gt

v = 4 × 9.8

v = 39.2 m/s

Thus, the brick's velocity after 4 s is 39.2 m/s

B. Determination of how far the brick fall in 4 s.

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

Height (h) =?

h = ½gt²

h = ½ × 9.8 × 4²

h = 4.9 × 16

h = 78.4 m

Thus, the brick fall 78.4 m during the time.

5 0
1 year ago
Other questions:
  • A golf ball is hit by a club. The graph shows the variation with time of the force exerted on the bal
    11·2 answers
  • The amplitude of a wave decreases gradually as the wave travels down a long, stretched string. What happens to the energy of the
    12·1 answer
  • A particular cylindrical bucket has a height of 36.0 cm, and the radius of its circular cross-section is 15 cm. The bucket is em
    7·1 answer
  • An oxygen atom at a particular site within a DNA molecule can be made to execute simple harmonic motion when illuminated by infr
    5·1 answer
  • Rosa studies the position-time graph of two race cars. A graph titled Position versus Time shows time in hours on the x axis, nu
    6·2 answers
  • Imagine two people standing at placemark A and placemark E, looking at each other across the fault. Which of the following state
    7·1 answer
  • An ideally efficient heat pump delivers 1000 J of heat to room air at 300 K. If it extracted heat from 260 K outdoor air, how mu
    10·1 answer
  • .. A 15.0-kg fish swimming at 1.10 m&gt;s suddenly gobbles up a 4.50-kg fish that is initially stationary. Ignore any drag effec
    13·1 answer
  • An excited hydrogen atom releases an electromagnetic wave to return to its normal state. You use your futuristic dual electric/m
    11·1 answer
  • A student is flying west on a school trip from Winnipeg to Calgary in a jet that has an air velocity of 792 km/h.The direction t
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!