Answer:
The tension in the string is quadrupled i.e. increased by a factor of 4.
Explanation:
The tension in the string is the centripetal force. This force is given by

m is the mass, v is the velocity and r is the radius.
It follows that
, provided m and r are constant.
When v is doubled, the new force,
, is

Hence, the tension in the string is quadrupled.
Answer:
The energy of this particle in the ground state is E₁=1.5 eV.
Explanation:
The energy
of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

So we can rewrite the energy in the ground state as:



Finally

Incomplete question.The complete question is here
Determine the torque applied to the shaft of a car that transmits 225 hp and rotates at a rate of 3000 rpm.
Answer:
Torque=0.51 Btu
Explanation:
Given Data
Power=225 hp
Revolutions =3000 rpm
To find
T( torque )=?
Solution
As

As force moves an object through a distance, work is done on the object. Likewise, when a torque rotates an object through an angle, work is done.
So

Answer:
The following equation can be used.
(32°F − 32) × 5/9=C