answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
1 year ago
5

The 12.2-m crane weighs 18 kn and is lifting a 67-kn load. the hoisting cable (tension t1) passes over a pulley at the top of th

e crane and attaches to an electric winch in the cab. the pendant cable (tension t2), which supports the crane, is fixed to the top of the crane. find the tensions in the two cables and the force fp at the pivot.
Physics
1 answer:
charle [14.2K]1 year ago
4 0
I can't seem to figure out the angle between T1 and T2. So suppose, it is 10º; then T2 makes an angle of 35º w/r/t horizontal, and T1 makes an angle of 45º. 
Sum the moments about the base of the crane; Σ M = 0. 0 = T2*cos35*L*cos40 + T1*cos45*L*cos40 - T2*sin35*L*sin40 - T1*sin45*L*sin40 - W*(L/2)*sin40 - T1*L*sin40 → length L cancels where W = 18 kN 
0 = 0.259*T2 - 43kN T2 = 166 kN 
You might be interested in
How far could a rabbit run if it ran 36km/h for 5.0min?
Korolek [52]

3 kilometers, it is just 5/60 or 1/12 multiplied by 36.

4 0
2 years ago
Read 2 more answers
A radioactive substance decays exponentially. A scientist begins with 200 milligrams of a radioactive substance. After 17 hours,
lianna [129]

75.17 mg of the radioactive substance will remain after 24 hours.

Answer:

Explanation:

Any radioactive substance will obey the exponential decay behavior. So according to this behavior, any radioactive substance will be decaying in terms of exponential form of disintegration constant and Time.

Disintegration constant is the rate of decay of radioactive elements. It can be measured using the half life time of the radioactive element .While half life time is the time taken by any radioactive element to decay half of its concentration. Like in this case, at first the scientist took 200 mg then after 17 hours, it got reduced to 100 g. So the half life time of this element is 17 hours.

Then Disintegration constant = 0.6932/Half Life time

Disintegration constant = 0.6932/17=0.041

Then as per the law of disintegration constant:

N = N_{0}e^{-xt}

Here N is the amount of radioactive element remaining at time t and N_{0} is the initial amount of sample, x is the disintegration constant.

So here, N_{0} = 200 mg, x = 0.041 and t = 24 hrs.

N = 200 ×e^{-24*0.041} =75.17 mg.

So 75.17 mg of the radioactive substance will remain after 24 hours.

3 0
1 year ago
Your eye is designed to work in air. Surrounding it with water impairs its ability to form images. Consequently, scuba divers we
grin007 [14]

Answer:

Check the explanation

Explanation:

A) There are two important angles within the plastic: the angle immediately after the first refraction (the water/plastic interface) and the angle immediately before the second refraction (the plastic/air interface).

To find out how they relate, draw a picture with the path the light follows in the plastic and the normal to both surfaces.

Once you have labeled both angles, keep in mind that the surfaces are parallel, and thus their normal are parallel lines. An important theorem from geometry will give you the relationship between the angles.

Using Snell's Law,   θa = asin[(nw/na)*sin(θw)]

B) D = l/tan(θw)

C) D = l/θw

D) d/D = na/nw

8 0
2 years ago
A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
olya-2409 [2.1K]

Explanation:

When Michelson-Morley apparatus is turned through 90^{o} then position of two mirrors will be changed. The resultant path difference will be as follows.

      \frac{lv^{2}}{\lambda c^{2}} - (-\frac{lv^{2}}{\lambda c^{2}}) = \frac{2lv^{2}}{\lambda c^{2}}

Formula for change in fringe shift is as follows.

          n = \frac{2lv^{2}}{\lambda c^{2}}

       v^{2} = \frac{n \lambda c^{2}}{2l}

             v = \sqrt{\frac{n \lambda c^{2}}{2l}}

According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.

             l = 11 m

    \lambda = 5.9 \times 10^{-7} m

           c = 3.0 \times 10^{8} m/s

Hence, putting the given values into the above formula as follows.

            v = \sqrt{\frac{n \lambda c^{2}}{2l}}

               = \sqrt{\frac{1 \times (5.9 \times 10^{-7} m) \times (3.0 \times 10^{8})^{2}}{2 \times 11 m}}

               = 2.41363 \times 10^{9} m/s

Thus, we can conclude that velocity deduced is 2.41363 \times 10^{9} m/s.

3 0
1 year ago
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
1 year ago
Read 2 more answers
Other questions:
  • Water is a colorless and odorless liquid. It can exist in solid, liquid, and gas states. It boils at 100 degrees C and melts at
    13·1 answer
  • Camping equipment weighing 6000 n is pulled across a frozen lake by means of a horizontal rope. the coefficient of kinetic frict
    9·1 answer
  • Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe
    7·1 answer
  • In aviation, it is helpful for pilots to know the cloud ceiling, which is the distance between the ground and lowest cloud. The
    11·1 answer
  • Al llegar a detenerse, un automóvil deja marcas de derrape de 92m de largo sobre una autopista. Si se supone una desaceleración
    15·1 answer
  • When a 100-Ω resistor is connected across the terminals of a battery of emf ε and internal resistance r, the battery delivers 0.
    9·1 answer
  • Consider a basketball player spinning a ball on the tip of a finger. If a player performs 1.91 J1.91 J of work to set the ball s
    9·1 answer
  • The amusement park ride shown above takes riders straight up a tall tower and then releases an apparatus holding seats. This app
    6·1 answer
  • A skateboarder is attempting to make a circular arc of radius r = 16 m in a parking lot. The total mass of the skateboard and sk
    10·1 answer
  • Kevin Tan's Balance Sheet. Total assets are 13,200 dollars. Total liabilities are 9,150 dollars. What is Kevin’s net worth on Ma
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!