answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
2 years ago
6

The amusement park ride shown above takes riders straight up a tall tower and then releases an apparatus holding seats. This app

aratus free-falls back to Earth and is stopped safely right above the ground. Which of the following indicates the magnitude of the gravitational force exerted on a rider of mass m on the way up and on the way down?

Physics
1 answer:
Natasha2012 [34]2 years ago
7 0

The gravitational force on the rider is:

- Way up: equal to mg

- Way down: equal to mg

Explanation:

The choices are missing: find them in the attached figure.

The force of gravity acting on a body is a force directed downward (towards the Earth's centre) and whose magnitude is

F=mg

where

m is the mass of the body

g is the acceleration due to gravity

The value of g is approximately constant near the Earth's surface and it is

g=9.8 m/s^2

During the ride, the mass of the rider, m, remains constant. This means that the magnitude of the gravitational force, mg, exerted on the rider remains constant during the rider.

Therefore, the correct answer is

- Way up: equal to mg

- Way down: equal to mg

Learn more about force of gravity:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

You might be interested in
Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
KIM [24]

Answer:

The velocity is v = 4.76 \ m/s

Explanation:

From the question we are told that

   The first distance is   d_1  =  4.0 \ km  =  4000 \ m

   The  first speed  is  v_1 =  5.0 \ m/s

    The  second distance is  d_2  =  1.0 \ km  =  1000 \ m

    The  second speed  is  v_2  =  4.0 \ m/s

Generally the time taken for first distance is  

      t_1 =  \frac{d_1 }{v_1 }

        t_1 =  \frac{4000}{5}

       t_1 =  800 \ s

The time taken for second  distance is

           t_1 =  \frac{d_2 }{v_2 }

        t_1 =  \frac{1000}{4}

       t_1 =  250 \ s

The total time is mathematically represented as

     t =  t_1 + t_2

=>   t =  800 + 250

=>    t =  1050 \ s

Generally the constant velocity that would let her finish at the same time is mathematically represented as

      v =  \frac{d_1 + d_2}{t }

=>    v =  \frac{4000 + 1000}{1050 }

=>    v = 4.76 \ m/s

7 0
2 years ago
A woman living in a third-story apartment is moving out. Rather than carrying everything down the stairs, she decides to pack he
Flura [38]

Answer:

T = 480.2N

Explanation:

In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.

The forces on the boxes are:

T-Mg=0      (1)

T: tension of the rope

M: mass of the boxes 0= 49kg

g: gravitational acceleration = 9.8m/s^2

The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.

By using the equation (1) you obtain:

T=Mg=(49kg)(9.8m/s^2)=480.2N

The woman needs to pull the rope at 480.2N

8 0
2 years ago
The angle θ is slowly increased. Write an expression for the angle at which the block begins to move in terms of μs.
Reika [66]

Answer:

tan \theta = \mu_s

Explanation:

An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:

mg sin \theta - \mu_s R =0 (1)

where

mg sin \theta is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity, \theta the angle of the slope

\mu_s R is the frictional force, with \mu_s being the coefficient of friction and R the normal reaction of the incline

The equation of the forces along the direction perpendicular to the slope is

R-mg cos \theta = 0

where

R is the normal reaction

mg cos \theta is the component of the weight perpendicular to the slope

Solving for R,

R=mg cos \theta

And substituting into (1)

mg sin \theta - \mu_s mg cos \theta = 0

Re-arranging the equation,

sin \theta = \mu_s cos \theta\\\rightarrow tan \theta = \mu_s

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of \mu_s, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.

4 0
2 years ago
Let v1, , vk be vectors, and suppose that a point mass of m1, , mk is located at the tip of each vector. The center of mass for
g100num [7]

Answer:

Explanation:

Center of mass is give as

Xcm = (Σmi•xi) / M

Where i= 1,2,3,4.....

M = m1+m2+m3 +....

x is the position of the mass (x, y)

Now,

Given that,

u1 = (−1, 0, 2) (mass 3 kg),

m1 = 3kg and it position x1 = (-1,0,2)

u2 = (2, 1, −3) (mass 1 kg),

m2 = 1kg and it position x2 = (2,1,-3)

u3 = (0, 4, 3) (mass 2 kg),

m3 = 2kg and it position x3 = (0,4,3)

u4 = (5, 2, 0) (mass 5 kg)

m4 = 5kg and it position x4 = (5,2,0)

Now, applying center of mass formula

Xcm = (Σmi•xi) / M

Xcm = (m1•x1+m2•x2+m3•x3+m4•x4) / (m1+m2+m3+m4)

Xcm = [3(-1, 0, 2) +1(2, 1, -3)+2(0, 4, 3)+ 5(5, 2, 0)]/(3 + 1 + 2 + 5)

Xcm = [(-3, 0, 6)+(2, 1, -3)+(0, 8, 6)+(25, 10, 0)] / 11

Xcm = (-3+2+0+25, 0+1+8+10, 6-3+6+0) / 11

Xcm = (24, 19, 9) / 11

Xcm = (2.2, 1.7, 0.8) m

This is the required center of mass

6 0
2 years ago
If an electromagnetic wave has components Ey = E0 sin(kx - ωt) and Bz = B0 sin(kx - ωt), in what direction is it traveling?
fomenos

Answer:

Its traveling in the +x direction

Explanation:

The E-field is in the +y-direction, and the B-field is in the +z-direction, so it must be moving along the +x-direction, since the E-field, B-field and the direction of moving are all at right angles to each other.

8 0
2 years ago
Other questions:
  • Determine the cutting force f exerted on the rod s in terms of the forces p applied to the handles of the heavy-duty cutter.
    11·2 answers
  • A soccer player attempting to steal the ball from an opponent was extending her knee at 50 deg/s when her foot struck the oppone
    15·1 answer
  • Maria throws an apple vertically upward from a height of 1.3 m with an initial velocity of +2.8 m/s. Will the apple reach a frie
    13·1 answer
  • The researcher requires the force on the wire to point upward with a magnitude of 4.2x10-4 N. The length of the wire that is in
    12·1 answer
  • A horizontal uniform meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging from it at the 20-cm mark and a 0.30
    8·2 answers
  • The height of a typical playground slide is about 6 ft and it rises at an angle of 30 ∘ above the horizontal.
    7·1 answer
  • A car is driving east at 120. km/h from Toronto to Ottawa. The distance between the two cities is 425.5 km, how long will it tak
    8·1 answer
  • A bird is flying in a room with a velocity field of . Calculate the temperature change that the bird feels after 9 seconds of fl
    10·1 answer
  • What type of equilibrium is guaranteed by each condition of equilibrium
    12·1 answer
  • If the ball is 0.60 mm from her shoulder, what is the tangential acceleration of the ball? This is the key quantity here--it's a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!