answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
2 years ago
9

You, Archimedes, suspect that the king’s crown is not solid gold but is instead gold-plated lead. To test your theory, you weigh

the crown, and find it to weigh 60.0 N, and to have an apparent weight of 56.4 N when it is completely submerged in water. Take the density of gold to be 19300 kg/m^3, the density of lead to be 11340 kg/m^3, and the density of water to be 1000 kg/m^3. Also, use g = 9.80 m/s^2. What percentage (by weight) of this crown is made of gold? The rest, by the way, is lead.
(a) What is the average density of the crown?
Correct: Your answer is correct. kg/m3
(b) What percentage (by weight) of this crown is made of gold? The rest, we assume, is lead.
Incorrect: Your answer is incorrect. %
Physics
1 answer:
hjlf2 years ago
4 0

Answer:

a) 16675.75 Kg/m³ b) 77.6%

Explanation:

the weight of the crown = 60 N, density of gold = 19300 Kg/m^3, density of lead = 11340 kg/m^3, density of water = 1000kg/m^3 and acceleration due to gravity = 9.8 m/s^2

upthrust on the crown = weight in air - weight when fully submerged in water = 60 - 56.4 = 3.6 N

mass of water displaced = 3.6 / 9.8  since weight = mass × g

mass of water displaced = 0.367 Kg

density of water = mass / volume

1000 = 0.367 / volume

cross multiply and find volume

volume of the crown = 0.367 / 1000 = 0.000367 m³ since the crown will displace water of equal volume according to Archimedes principle

Let V1 represent the volume of Gold and let V2 represent the volume of lead

Total volume of the crown = V1 + V2

also

density of gold = mass of gold / V1 and density of lead = mass of lead / V2

19300 = mass of gold in the crown / V1 and 11340 = mass of lead in the crown / V2

19300 V1 = mass of gold and 11340 V2 = mass of lead

add the two together

19300 V1 + 11340 V2 = weigth of the crown / 9.8

19300 V1 + 11340 V2 = 6.12 also

V1 + V2 = 0.000367

make V1 subject of the formula in equation 2

V1 = 0.000367 - V2

substitute for V1 in equation 1

19300 (0.000367 - V2) + 11340 V2 = 6.12

open the bracket

7.083 - 19300 V2 + 11340 V2 = 6.12

rearrange the equation

-7960 V2 = 6.12 - 7.083  

-7960 V2 = -0.963

V2 = -0.963 / -7960 = 0.000121 (volume of lead in the crown)

substitute V2 into equation 2

V1 + 0.000121  = 0.000367m³

V1 = 0.000367 - 0.000121 = 0.000246m³ (volume of gold in the crown)

so mass of gold in the crown = 19300 × 0.000246 = 4.748 kg

and mass of lead = 11340 × 0.000121 = 1.372 kg

average density of the crown = (mass of gold + mass of lead) / total volume = 6.12 / 0.000367 = 16675.75 kg/ m³

b) percentage make of gold = mass of gold / total mass × 100 = 77.6 % approx

You might be interested in
Which factors could be potential sources of error in the experiment? check all that apply.
Vadim26 [7]

(A)energy lost in the lever due to friction

(C) visual estimation of height of the beanbag

(E)position of the fulcrum for the lever affecting transfer of energy

6 0
2 years ago
Read 2 more answers
The distance of the earth from the sun is 93 000 000 miles. if there are 3.15 × 107 s in one year, find the speed of the earth i
faltersainse [42]

The angular velocity of the orbit about the sun is:

w = 1 rev / year = 1 rev / 3.15 × 10^7 s

 

Now in 1 rev there is 360° or 2π rad, therefore:

w = 2π rad / 3.15 × 10^7 s

 

To convert in linear velocity, multiply the rad /s by the radius:

v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles

<span>v = 18.55 miles / s = 29.85 km / s</span>

5 0
2 years ago
Read 2 more answers
A solid metal sphere of diameter D is spinning in a gravity-free region of space with an angular velocity of ωi. The sphere is s
Leona [35]

Answer:

0.6

Explanation:

The volume of a sphere = \frac{4}{3} \pi (\frac{D}{2})^3

Therefore \pi * r^2 * (\frac{D}{2} ) = \frac{4}{3} \pi (\frac{D}{2})^3

r of the disc = 1.15(\frac{ D}{2} )

Using conservation of angular momentum;

The M_i of the sphere = \frac{2}{5} m \frac{D}{2}^2

M_i of the disc = m*\frac{   \frac{1.15*D}{2}^2 }{2}

\frac{wd}{ws} = \frac{\frac{2}{5}m * \frac{D}{2}^2}{  m * \frac{(\frac{`.`5*D}{2})^2 }{2} }

= 0.6

5 0
2 years ago
A carousel that is 5.00 m in radius has a pair of 600-Hz sirens mounted on posts at opposite ends of a diameter. The carousel ro
Gelneren [198K]

Answer:

59cm

Explanation:

angular velocity = 0.8 rad/s

linear velocity = angular velocity * radius

                        =0.8rad/s * 5m

                        = 4 m/s

wavelength = (V + U)/F

where,

V is the velocity of the wave

U is the velocity of the source

F is the frequency of the source.

wavelength = (350 m/s + 4 m/s ) / 600 Hz

Wavelength = 0.59m or 59 cm

4 0
2 years ago
A hot air balloon is on the ground, 200 feet from an observer. The pilot decides to ascend at 100 ft/min. How fast is the angle
liq [111]

Answer:

0.0031792338 rad/s

Explanation:

\theta = Angle of elevation

y = Height of balloon

Using trigonometry

tan\theta=y\dfrac{y}{200}\\\Rightarrow y=200tan\theta

Differentiating with respect to t we get

\dfrac{dy}{dt}=\dfrac{d}{dt}200tan\theta\\\Rightarrow \dfrac{dy}{dt}=200sec^2\theta\dfrac{d\theta}{dt}\\\Rightarrow 100=200sec^2\theta\dfrac{d\theta}{dt}\\\Rightarrow \dfrac{d\theta}{dt}=\dfrac{100}{200sec^2\theta}\\\Rightarrow \dfrac{d\theta}{dt}=\dfrac{1}{2}cos^2\theta

Now, with the base at 200 ft and height at 2500 ft

The hypotenuse is

h=\sqrt{200^2+2500^2}\\\Rightarrow h=2507.98\ ft

Now y = 2500 ft

cos\theta=\dfrac{200}{h}\\\Rightarrow cos\theta=\dfrac{200}{2507.98}=0.07974

\dfrac{d\theta}{dt}=\dfrac{1}{2}\times 0.07974^2\\\Rightarrow \dfrac{d\theta}{dt}=0.0031792338\ rad/s

The angle is changing at 0.0031792338 rad/s

6 0
2 years ago
Other questions:
  • What is the final speed of an object that starts from rest and accelerates uniformly at 4.0 meters per second2 over a distance o
    15·1 answer
  • The leaves of a tree lose water to the atmosphere via the process of transpiration. A particular tree loses water at the rate of
    7·1 answer
  • Rank the following situations according to the magnitude of the impulse of the net force, from largest value to smallest value.
    6·1 answer
  • Which structure contains the lowest amount of oxygen?
    5·2 answers
  • Suppose you have a pendulum clock which keeps correct time on Earth(acceleration due to gravity = 1.6 m/s2). For ever hour inter
    8·1 answer
  • To win a prize at the county fair, you're trying to knock down a heavy bowling pin by hitting it with a thrown object. Should yo
    15·1 answer
  • Rod AB is held in place by the cord AC. Knowing that the tension in the cord is 1350 N and that c 5 360 mm, determine the moment
    11·1 answer
  • What is the concentration of molecular oxygen (O2) in mol/L on a June day in Toronto when atmospheric pressure is 1.0 atm and th
    15·1 answer
  • Suggest one reason why the bricklayer needs a higher energy diet than the computer operator
    10·1 answer
  • For the first 10 seconds a squirrel runs 3 m/s to look for an acorn. The next 5 seconds he eats an acorn that he finds. Afterwar
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!