answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
2 years ago
11

Jake uses a fire extinguisher to put out a small fire. When he squeezes the handle, the flame rettardant is released from the ex

tinguisher with considerable force. As a result, Jake has to reinforce his grip on the extinguisher to hold it in place as it pushes back into his hands. The projectile in this scenario is the . The recoil in this scenario is the . The force on the flame rettardant is the force on the extinguisher. The mass of the flame rettardant is the mass of the extinguisher. The acceleration of the flame rettardant is the acceleration of the extinguisher.
Physics
2 answers:
Tpy6a [65]2 years ago
7 0
Can you attach a picture of the actual problem?
pogonyaev2 years ago
5 0

The projectile in this scenario is the flame r.

The recoil in this scenario is the extinguisher.

The force on the flame r is equal to the force on the extinguisher.

The mass of the flame r is less than the mass of the extinguisher.

The acceleration of the flame r is greater than the acceleration of the extinguisher.

You might be interested in
Water evaporating from a pond does so as if it were diffusing across an air film 0.15 cm thick. The diffusion coefficient of wat
QveST [7]

Answer:

The water level will drop by about 1.24 cm in 1 day.

Explanation:

Here Mass flux of water vapour is given as

                               j_{H_2O}=\frac{D}{l} \bigtriangleup c

where

  • j_{H_2O} is the mass flux of the water which is to be calculated.
  • D is diffusion coefficient which is given as 0.25 cm^2/s
  • l is the thickness of the film which is 0.15 cm thick.
  • \bigtriangleup c is given as

                                \bigtriangleup c= \frac{P_{sat}-P_a}{RT}

In this

  • P_{sat} is the saturated water pressure, which is look up from the saturated water property at 20°C and 0.5 saturation given as 2.34 Pa
  • P_a is the air pressure which is given as 0.5 times of P_{sat}
  • R is the universal gas constant as 8.314 kJ/kmol-K
  • T is the temperature in Kelvin scale which is 20+273= 293K

By substituting values in the equation

                                    \bigtriangleup c= \frac{P_{sat}-P_a}{RT} \\ \bigtriangleup c= \frac{P_{sat}-0.5P_{sat}}{RT} \\ \bigtriangleup c= \frac{0.5P_{sat}}{RT} \\ \bigtriangleup c= \frac{0.5 \times 2.34}{8.314 \times 293} \\\bigtriangleup c= 0.48 mol/m^3

Converting \bigtriangleup c into cm^3/cm^3

As 1 mole of water 18 cm^3 so

                               \bigtriangleup c= 0.48 mol/m^3 \\ \bigtriangleup c= 0.48 \times 18 \times 10^{-6}  cm^3/cm^3 \\ \bigtriangleup c= 8.64 \times 10^{-6}  cm^3/cm^3

Putting this in the equation of mass flux equation gives

                            j_{H_2O}=\frac{D}{l} \bigtriangleup c \\ j_{H_2O}=\frac{0.25}{0.15} \times 8.64 \times 10^{-6} \\ j_{H_2O}=14.4 \times 10^{-6}  cm/s

For calculation of water level drop in a day, converting mass flux as

                     j_{H_2O}=14.4 \times 10^{-6}  \times 24 \times 3600  cm/day\\ j_{H_2O}=1.24  cm/day

So the water level will drop by about 1.24 cm in 1 day.

7 0
2 years ago
What is the first velocity of the car with four washers at
VARVARA [1.3K]

Answer:

0.28

0.56

Explanation:

5 0
2 years ago
Read 2 more answers
A 1000-kg car is slowly picking up speed as it goes around a horizontal curve whose radius is 100 m. The coefficient of static f
Snezhnost [94]

Answer:

18.5 m/s

Explanation:

On a horizontal curve, the frictional force provides the centripetal force that keeps the car in circular motion:

\mu mg = m\frac{v^2}{r}

where

\mu is the coefficient of static friction between the tires and the road

m is the mass of the car

g is the gravitational acceleration

v is the speed of the car

r is the radius of the curve

Re-arranging the equation,

v=\sqrt{\mu gr}

And by substituting the data of the problem, we find the speed at which the car begins to skid:

v=\sqrt{(0.350)(9.8 m/s^2)(100 m)}=18.5 m/s

7 0
2 years ago
Read 2 more answers
Un pendule est constitue par une masse ponctuelle m= 0,1kg accrocher a un fil sans masse de longueur L = 0,4 m on ecarte ce pend
BabaBlast [244]
I could help
If I know what I was reading I’m sorry I need to translate
3 0
2 years ago
Small frogs that are good jumpers are capable of remarkable accelerations. One species reaches a takeoff speed of3.7 m/s in60 ms
MAVERICK [17]

We know that acceleration is change in velocity by time taken for that change.

In this case velocity change is 3.7 m/s

Time taken for this change = 60 ms = 6 *10^{-3} seconds

So acceleration of frog  = \frac{3.7}{60*10^{-3}}

                                       = 61.66 m/s^2

So acceleration of frog is 61.66 m/s^2

o it is evident that frog is capable of remarkable accelerations.

8 0
2 years ago
Read 2 more answers
Other questions:
  • Seema knows the mass of a basketball. What other information is needed to find the ball’s potential energy? the volume and heigh
    12·3 answers
  • If the current in a wire increases from 5 A to 10 A, what happens to its magnetic field? If the distance of a charged particle f
    14·2 answers
  • The curved section of a horizontal highway is a circular unbanked arc of radius 740m. If the coefficient of static friction betw
    15·2 answers
  • Consider the static equilibrium diagram here. What is the angle F1 must make with the horizontal?
    13·2 answers
  • The Sun is the primary source of energy for ecosystems. The Sun emits . When an organism obtains nutrients by feeding on other o
    7·2 answers
  • Calculate the distance d from the center of the sun at which a particle experiences equal attractions from the earth and the sun
    14·1 answer
  • A horse and rider are racing to the right with a speed of 21\,\dfrac{\text m}{\text s}21 s m ​ 21, start fraction, start text, m
    12·2 answers
  • A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for the
    15·1 answer
  • A 0.110 kg cube of ice (frozen water) is floating in glycerine. The glycerine is in a tall cylinder that has inside radius 3.70
    14·1 answer
  • A truck drives to a rock quarry at a speed of 20 m/s. The truck takes on a load of rocks, which doubles its mass, and leaves at
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!