Answer:

Explanation:
Outside the sphere's surface, the electric field has the same expression of that produced by a single point charge located at the centre of the sphere.
Therefore, the magnitude of the electric field ar r = 5.0 cm from the sphere is:

where
is the Coulomb's constant
is the charge on the sphere
is the radius of the sphere
is the distance from the surface of the sphere
Substituting, we find

Answer:
Explanation:
If Bradley examination was done and interpreted in the same facility, the radiologist code is used example- procedure code 72100- Radiologic examination, spine, lumbosacral, 2 or 3 views is reported.
if the X-ray was taken by Dr X but Dr X does not read or interpret the image but forward it to the radiologist for initial report, then a 26- modifier is used. E.g A reports by the technologist would be, procedure code 72050-Radiologic examination, spine, cervical, 2 or 3
views or 72050- TC in certain situations and the consulting radiologist would report 72050-26.
if Bradley’s x-ray were sent to an independent radiologist for interpretation, then the procedure code 76140 is used in reporting.
Answer:
The banking angle necessary for the race cars is 34.84°
Explanation:
For normal reaction the expression is:

Answer:
zero or 2π is maximum
Explanation:
Sine waves can be written
x₁ = A sin (kx -wt + φ₁)
x₂ = A sin (kx- wt + φ₂)
When the wave travels in the same direction
Xt = x₁ + x₂
Xt = A [sin (kx-wt + φ₁) + sin (kx-wt + φ₂)]
We are going to develop trigonometric functions, let's call
a = kx + wt
Xt = A [sin (a + φ₁) + sin (a + φ₂)
We develop breasts of double angles
sin (a + φ₁) = sin a cos φ₁ + sin φ₁ cos a
sin (a + φ₂) = sin a cos φ₂ + sin φ₂ cos a
Let's make the sum
sin (a + φ₁) + sin (a + φ₂) = sin a (cos φ₁ + cos φ₂) + cos a (sin φ₁ + sinφ₂)
to have a maximum of the sine function, the cosine of fi must be maximum
cos φ₁ + cos φ₂ = 1 +1 = 2
the possible values of each phase are
φ1 = 0, π, 2π
φ2 = 0, π, 2π,
so that the phase difference of being zero or 2π is maximum
Answer:

Explanation:
As we know that the mass is revolving with constant angular speed in the circle of radius R
So we will have

now the position vector at a given time is

now the linear velocity is given as


