The velocity of the aircraft relative to the ground is 240 km/h North
Explanation:
We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.
Mathematically:

where
v' is the velocity of the aircraft relative to the ground
v is the velocity of the aircraft relative to the air
is the velocity of the air relative to the ground.
Taking north as positive direction, we have:
v = +320 km/h
(since the air is moving from North)
Therefore, we find
(north)
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly
Ok the velocity of an object in free fall is given by the equation :
v=v0-gt, where v0 is the original velocity, g is the gravitational constant (9.8 m/s^2) and t is the time.
so, we substitute values into this equation. v=35.8-9.8*2.5; v=11.3 m/s
Answer:
Explanation:
Wheel completes four revolution.
The linear displacement is zero.
The angular displacement is 4 x 2π = 8π radian.
So, option (c) is correct.
Answer:
|v| = 8.7 cm/s
Explanation:
given:
mass m = 4 kg
spring constant k = 1 N/cm = 100 N/m
at time t = 0:
amplitude A = 0.02m
unknown: velocity v at position y = 0.01 m

1. Finding Ф from the initial conditions:

2. Finding time t at position y = 1 cm:

3. Find velocity v at time t from equation 2:
