<span>The answer is transformer. They utilize
electromagnetic induction to generate current. This is only possible in
alternating current due to the differential increase and decrease of electrical
current that induces changes in magnetic flux in the coil. This varies the
magnetic flux of the primary coil that generates current in the secondary coil.</span>
Answer:
So Tammy must move with speed 4.76 m/s in opposite direction of Jackson
Explanation:
As per law of conservation of momentum we know that there is no external force on it
So here we can say that initial momentum of the system must be equal to the final momentum of the system
now we have

final they both comes to rest so here we can say that final momentum must be zero
now we have


Answer:
height is 69.68 m
Explanation:
given data
before it hits the ground = 46 % of entire distance
to find out
the height
solution
we know here acceleration and displacement that is
d = (0.5)gt² ..............1
here d is distance and g is acceleration and t is time
so when object falling it will be
h = 4.9 t² ....................2
and in 1st part of question
we have (100% - 46% ) = 54 %
so falling objects will be there
0.54 h = 4.9 (t-1)² ...................3
so
now we have 2 equation with unknown
we equate both equation
1st equation already solve for h
substitute h in the second equation and find t
0.54 × 4.9 t² = 4.9 (t-1)²
t = 0.576 s and 3.771 s
we use here 3.771 s because 0.576 s is useless displacement in the last second before it hits the ground is 46 % of the entire distance it falls
so take t = 3.771 s
then h from equation 2
h = 4.9 t²
h = 4.9 (3.771)²
h = 69.68 m
so height is 69.68 m
The area of the top and bottom:
2πr²
Cost for top and bottom:
2πr² x 0.02
= 0.04πr²
Area for side:
2πrh
Cost for side:
2πrh x 0.01
= 0.02πrh
Total cost:
C = 0.04πr² + 0.02πrh
We know that the volume of the can is:
V = πr²h
h = 500/πr²
Substituting this into the cost equation to get a cost function of radius:
C(r) = 0.04πr² + 0.02πr(500/πr²)
C(r) = 0.04πr² + 10/r
Now, we differentiate with respect to r and equate to 0 to obtain the minimum value:
0 = 0.08πr - 10/r²
10/r² = 0.08πr
r³ = 125/π
r = 3.41 cm