answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faust18 [17]
2 years ago
11

Lucy is cruising through space in her new spaceship. As she coasts along, a tiny spacebug drifts into her path and bounces off t

he window. Consider several statements concerning this scenario. Evaluate each statement according to the law of momentum conservation and match it to the appropriate category.
Physics
1 answer:
Elden [556K]2 years ago
4 0

Your question is not complete, please let me assume this to be your complete question:

Lucy is cruising through space in her new spaceship. As she coasts along, a spacebug drifts into her path and bounces off the window. Consider several statements concerning this scenario. Evaluate each statement according to the law of momentum conservation and match it to the appropriate category.

Below are several statements concerning this scenario. Evaluate each statement and decide if it is true, false, or undetermined by the principle of momentum conservation.

i) The total change in momentum for this interaction is zero.

ii) The change in the space bug's momentum is greater than the change in the spaceship's momentum.

iii) If the space bug had stuck to the spaceship instead of bouncing off, momentum would not have been conserved for this interaction.

Answer:

I is true

II is false

III is undetermined

Explanation:

STATEMENT I : This statement is TRUE because because they was no change in velocity and mass of the spaceship and spacebug, after the collision, as the bug bounced outside the window and the spaceship retains it's velocity. Therefore the total momentum in the system before the collision, is equal to the total momentum of the system after the collision.

Where;

momentum = Mass × velocity

M1V1 = M2V2

Therefore;

M2V2 - M1V1 = 0

STATEMENT II : This statement is FALSE, because the change in the momentum of the spaceship and bug are equal, as the spaceship and bug remains in constant motion after collision. The collision did not have any effect in their velocity nor mass.

Ps = Pb

Ps = Momentum of spaceship

Pb = Momentum of spacebug

STATEMENT III : The statement is UNDETERMINE, because it will depend on the momentum we are considering. If the spaceship is still in constant motion, that means moment of the spaceship is conserved, while that of the spacebug is not conserved.

You might be interested in
A metallic sphere of radius 2.0 cm is charged with +5.0-μC+5.0-μC charge, which spreads on the surface of the sphere uniformly.
sladkih [1.3K]

Answer:

Explanation:

Potential due to a charged metallic sphere having charge Q and radius r on its surface will be

v = k Q / r . On the surface and inside the metallic sphere , potential is the same . Outside the sphere , at a distance R from the centre  potential is

v = k Q / R

a ) On the surface of the shell , potential due to positive charge is

V₁ = \frac{9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

On the surface of the shell , potential due to negative  charge is

V₁ = \frac{- 9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

Total potential will be zero . they will cancel each other.

b ) On the surface of the sphere potential

= \frac{9\times10^9\times5\times10^{-6}}{2\times10^{-2}}

= 22.5 x 10⁵ V

On the surface of the sphere potential due to outer shell

= \frac{9\times10^9\times5\times10^{-6}}{5\times10^{-2}}

= -9 x 10⁵

Total potential

=( 22.5 - 9 ) x 10⁵

= 13.5 x 10⁵ V

c ) In the space between the two , potential will depend upon the distance of the point from the common centre .

d ) Inside the sphere , potential will be same as that on the surface that is

13.5 x 10⁵ V.

e ) Outside the shell , potential due to both positive and negative charge will cancel each other so it will be zero.

5 0
2 years ago
A student uses an electronic force sensor to study how much force the student’s finger can apply to a specific location. The stu
melisa1 [442]

Answer:

B. Trial 2

Explanation:

Trial 2, because the student’s finger applied the largest force to the sensor.

Because the trial 2 student finger applied to largest force.

7 0
2 years ago
Read 2 more answers
What is the change in internal energy (in J) of a system that does 4.50 ✕ 105 J of work while 3.20 ✕ 106 J of heat transfer occu
Dmitrij [34]

Answer:

-3.25\times 10^6 J

Explanation:

We are given that

Work done by the system=4.5\times 10^5 J

Heat transfer into the system=U_1=3.2\times 10^6 J

Heat transfer to the environment=U_2=6\times 10^6 J

We have to find the change in internal energy

By first law of thermodynamics

\Delta Q=\Delta U+w

\Delta Q=U_1-U_2=3.2\times 10^6-6\times 10^6=-2.8\times 10^6J

Substitute the values then we get

-2.8\times 10^6=\Delta U+4.5\times 10^5

\Delta U=-2.8\times 10^6-4.5\times 10^5=-28\times 10^5-4.5\times 10^5=-32.5\times 10^5=-3.25\times 10^6 J

Hence, the change in internal energy =-3.25\times 10^6 J

7 0
2 years ago
You wad up a piece of paper and throw it into the wastebasket. How far will
vitfil [10]

The range of the piece of paper is C) 1.4 m

Explanation:

The motion of the piece of paper is the motion of a projectile, which consists of two separate motions:

- A uniform motion along the horizontal direction, with constant velocity

- A uniformly accelerated motion along the vertical direction, with constant acceleration (the acceleration of gravity, g=9.8 m/s^2)

From the equation of motion, it is possible to find an expression for the range (the total horizontal distance covered) of a projectile, which is given by:

d=\frac{u^2 sin 2\theta}{g}

where

u is the initial velocity

\theta is the angle of projection

g is the acceleration of gravity

For the piece of paper in this problem,

u = 4.3 m/s

\theta=65^{\circ}

Substituting,

d=\frac{(4.3)^2 sin(2\cdot 65^{\circ})}{9.8}=1.45 m \sim 1.4 m

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

6 0
2 years ago
Read 2 more answers
A net force is applied on a 100 kg rocket which causes the rocket to acceleration at 10 m/s2. The same net force is applied on a
ELEN [110]

Answer:

i dont know lo

Explanation:

8 0
1 year ago
Other questions:
  • A taxi starts from Monument Circle and travels 5 kilometers to the east for 5 minutes. Then it travels 10 kilometers to the sout
    6·2 answers
  • Write a hypothesis for Part II of the lab, which is about the relationship described by F = ma. In the lab, you will use a toy c
    10·2 answers
  • Which picture represents 2NO2?
    7·2 answers
  • A solution is oversaturated with solute. Which could be done to decrease the oversaturation?
    13·2 answers
  • Write the meaning of an object has 2 meter length
    15·1 answer
  • A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington
    5·1 answer
  • Albert skis down a hill at an angle of 19. He has a mass of 101 kg. What is the normal force of Albert?
    15·1 answer
  • A 50-kg meteorite moving at 1000 m/s strikes Earth. Assume the velocity is along the line joining Earth's center of mass and the
    13·1 answer
  • A toy of mass 0.190-kg is undergoing SHM on the end of a horizontal spring with force constant k = 350 N/m . When the toy is a d
    9·1 answer
  • Which table correctly identifies the abbreviation for SI units of length mass volume and temperature
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!