answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexgriva [62]
2 years ago
7

Two narrow, parallel slits separated by 0.85 mm are illuminated by 600 nm light, and the viewing screen is 2.8 m away from the s

lits. What is the phase difference between the two interfering waves on a screen, at a point 2.5 mm from the central bright fringe? Answer in radians.
Physics
1 answer:
AURORKA [14]2 years ago
6 0

Answer:

Phase difference = pi/4 radians

Explanation:

Given:

- The wavelength of incident light λ = 600 nm

- The split separation d = 0.85 mm

- Distance of screen from split plane L = 2.8 m

Find:

What is the phase difference between the two interfering waves on a screen, at a point 2.5 mm from the central bright fringe?

Solution:

- The phase difference can be evaluated by determining the type of interference that occurs at point y = 2.5 mm above central order. We will use the derived results from Young's double slit experiment.

                                  sin ( Q ) = m*λ /d  

                                  m = d*sin(Q) / λ

- Where, m is the order number and angle Q is the angle for mth order of fringe from central bright fringe.

                                  r = sqrt ( L^2 + 0.0025^ )

Where, r is the distance from split to the interference bright fringe.

                                  r = sqrt(2.8^ + 0.0025^) = 2.8

                                  sin(Q) = 0.0025 / 2.8

Hence.                        m = 0.00085*0.0025 / 2.8*(600*10^-9)

                                   m = 1.26

- We know that constructive interference would occurred at m = 1 and destructive interference @ m = 1.5. They have a phase difference of pi/2 radians.

- The order number lies in between constructive and destructive interference i.e m ≈ 1.25 then the corresponding phase difference = 0.5*(pi/2).

Answer:                  Phase difference = pi/4 radians

You might be interested in
Rotational dynamics about a fixed axis: A person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface
FrozenT [24]

Answer:

I = 2 kgm^2

Explanation:

In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:

\tau=I\alpha     (1)

I: moment of inertia of the door

α: angular acceleration of the door = 2.00 rad/s^2

τ: torque exerted on the door

You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:

\tau=Fd        (2)

F: force = 5.00 N

d: distance to the hinges = 0.800 m

You replace the equation (2) into the equation (1), and you solve for α:

Fd=I\alpha\\\\I=\frac{Fd}{\alpha}

Finally, you replace the values of all parameters in the previous equation for I:

I=\frac{(5.00N)(0.800m)}{2.00rad/s^2}=2kgm^2

The moment of inertia of the door around the hinges is 2 kgm^2

3 0
2 years ago
A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a
Lapatulllka [165]

Answer:

Amplitude, A = 0.049 meters

Explanation:

Given that,

A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a function of time according to the equation :

y = 0.049 \cos(7t) .......(1)

The general equation of a wave is given by :

y=A\cos(\omega t) .......(2)

A is amplitude of wave

On comparing equation (1) and (2) we get :

A = 0.049 meters

So, the amplitude of the wave is 0.049 meters.

3 0
2 years ago
Denise is conducting a physics experiment to measure the acceleration of a falling object when it slows down and comes to a stop
iren [92.7K]
We need a and we have m and F . Now a = f÷m so therefore a = 4,9 ÷ 0,5 which is 0,98 metres per cubic second
4 0
2 years ago
Read 2 more answers
A mass weighing 4 lb stretches a spring 2 in. Suppose that the mass is given an additional 6-in displacement in the positive dir
givi [52]

Answer:

\frac{1}{8} y'' + 2y' + 24y=0

Explanation:

The standard form of the 2nd order differential equation governing the motion of mass-spring system is given by

my'' + \zeta y' + ky=0

Where m is the mass, ζ is the damping constant, and k is the spring constant.

The spring constant k can be found by

w - kL=0

mg - kL=0

4 - k\frac{1}{6}=0

k = 4\times 6 =24

The damping constant can be found by

F = -\zeta y'

6 = 3\zeta

\zeta = \frac{6}{3} = 2

Finally, the mass m can be found by

w = 4

mg=4

m = \frac{4}{g}

Where g is approximately 32 ft/s²

m = \frac{4}{32} = \frac{1}{8}

Therefore, the required differential equation is

my'' + \zeta y' + ky=0

\frac{1}{8} y'' + 2y' + 24y=0

The initial position is

y(0) = \frac{1}{2}

The initial velocity is

y'(0) = 0

6 0
2 years ago
Molybdenum (Mo) has a BCC crystal structure, an atomic radius of 0.1363 nm, and an atomic weight of 95.94 g/mol. Compute and com
____ [38]

Answer:

Solid State or Condense matter book

Explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • the grid in a triode is kept negatively charged to prevent… a. the variations in voltage from getting too large. b. electrons be
    7·2 answers
  • what is the acceleration of a bowling ball that starts at rest and moves 300m down the gutter in 22.4 sec
    10·1 answer
  • Which two pieces of data indicate that Uranus resides in the outer region of the solar system
    12·1 answer
  • Analyze at the image below and answer the question that follows.
    14·2 answers
  • B. A hydraulic jack has a ram of 20 cm diameter and a plunger of 3 cm diameter. It is used for lifting a weight of 3 tons. Find
    13·1 answer
  • A sample of a gas occupies a volume of 90 mL at 298 K and a pressure of 702 mm Hg. What is the correct expression for calculatin
    9·1 answer
  • A student on a skateboard is moving at a speed of 1.40 m/s at the start of a 2.15 m high and 12.4 m long incline. The total mass
    9·1 answer
  • The inductor in a radio receiver carries a current of amplitude 200 mA when a voltage of amplitude 2.40 V is across it at a freq
    13·1 answer
  • The wind blows a jay bird south with a force of 300 Newtons. The
    7·1 answer
  • Two astronauts, A and B, both with mass of 60Kg, are moving along a straight line in the same direction in a weightless spaceshi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!