This can be answered using the beat frequency formula, which is simply the difference between 2 frequencies.
Let: <span>fᵇ = beat frequency
</span>f₁ = first frequency
f₂ = second frequency
fᵇ = |f₁ - f₂|
substituting the values:
fᵇ = |24Hz - 20Hz|
fᵇ = 4Hz
The unit Hz also means beats per second, therefore:
<span>fᵇ = 4 beats per second
</span>
Therefore, the answer is C. 4
Answer:
Explanation:
Let
h = height of balloon (in feet).
θ = angle made with line of sight and ground (in radians).
h = 300 tanθ

now
can be written as


When θ = π/4,


In determining the number of significant figures in a
given number, there are three rules to always remember / follow:
First: All integers except
zero are always significant.
<span>Second: Any zeros located between
non zeroes are always significant.</span>
Third: A zero located
after a non zero in a decimal is always significant whether it is before or
after the decimal
Therefore using this rule,
the number of significant digits in the given numbers are:
(a) 214 = 3
(b) 81.60 = 4
(c) 7.03 = 3
(d) 0.03 = 1
(e) 0.0086 = 2
(f) 3236 = 4
(g) 8700 = 2
Answer:
The tension in the string is quadrupled i.e. increased by a factor of 4.
Explanation:
The tension in the string is the centripetal force. This force is given by

m is the mass, v is the velocity and r is the radius.
It follows that
, provided m and r are constant.
When v is doubled, the new force,
, is

Hence, the tension in the string is quadrupled.
First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.
To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N
Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.
Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.
Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N
You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc