Answer:
1.32.225 N/C, direction is away from the point charge
2. 8.972*10^-12 C
3. the field is directed away from the axon
Explanation:
The electric field can be calculated as shown below:
E = k*|q|/r^2
Where:
E = electric field; k = 8.98755*10^9 N*m^2/C^2; r = distance between the measured field and point charge = 0.05 m; q = the point charge
For 0.100 m of the axon, the value of q is:
q = (5.6*10^11)*(+e)*(0.001)
+e = charge of an electron = 1.60217*10^-19 C
Thus:
q = (5.6*10^11)*(1.60217*10^-19)*(0.0001) = 8.972*10^-12 C
Therefore:
E = (8.98755*10^9)*(8.972*10^-12)/0.05^2 = 32.255 N/C
A positive point charge always produce an electric field that is directed away from the field while a negative point charge produces an electric field that is directed toward the field
Answer:
The flux is 682.6 Wb.
Explanation:
Given that,
Vector field 
We need to calculate the flux
Using formula of flux

Put the value into the formula




Hence, The flux is 682.6 Wb.
1000 kcal because you only get 10% of the energy of the thing you eat
Answer: machine's efficiency = 82.2%
Explanation:
Efficiency of a machine is the capability of a machine to convert input to output without waste.
It can be expressed as
Efficiency = output/ input × 100%
Output = 7,023N
Imput = 8,542N
Efficiency = 7,023N/8,542N × 100%
Efficiency = 82.2%
Answer:
335°C
Explanation:
Heat gained or lost is:
q = m C ΔT
where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.
Heat gained by the water = heat lost by the copper
mw Cw ΔTw = mc Cc ΔTc
The water and copper reach the same final temperature, so:
mw Cw (T - Tw) = mc Cc (Tc - T)
Given:
mw = 390 g
Cw = 4.186 J/g/°C
Tw = 22.6°C
mc = 248 g
Cc = 0.386 J/g/°C
T = 39.9°C
Find: Tc
(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)
Tc = 335