Answer:
293.7 degrees
Explanation:
A = - 8 sin (37) i + 8 cos (37) j
A + B = -12 j
B = a i+ b j , where and a and b are constants to be found
A + B = (a - 8 sin (37) ) i + ( 8cos(37) + b ) j
- 12 j = (a - 8 sin (37) ) i + ( 8cos(37) + b ) j
Comparing coefficients of i and j:
a = 8 sin (37) = 4.81452 m
b = -12 - 8cos(37) = -18.38908
Hence,
B = 4.81452 i - 18.38908 j ..... 4 th quadrant
Hence,
cos ( Q ) = 4.81452 / 12
Q = 66.346 degrees
360 - Q = 293.65 degrees from + x-axis in CCW direction
Answer:
Jari
Explanation:
The question requires to know who is traveling faster. This is done by comparing the gradients. The steeper the slope (high gradient), the faster the speed and vice versa.
From Jari's line, the starting point is (0, 0) and another point is (6, 7)
The gradient being change in y to change in x
Change in y=7-0=7
Change in x=6-0=6
Slope is 7/6
For Jade, first point is (0, 10) then another point is (6, 16)
Change in y=16-10=6
Change in x=6-0=6
Slope is 6/6=1
Clearly, 7/6 is greater than 6/6 or 1 hence Jari is faster than Jade
Answer:
Therefore,
Current through Nichrome wire is 0.3879 Ampere.
Explanation:
Given:
Length = l = 10 meter


V = 12 Volt
To Find:
Current, I =?
Solution:
Resistance for 0.0-m long 22-gauge nichrome wire with a radius of 0.321 mm if it is connected across a 12.0-V battery given as

Where,
R = Resistance
l = length
A = Area of cross section = πr²

Substituting the values we get




Now by Ohm's Law,

Substituting the values we get

Therefore,
Current through Nichrome wire is 0.3879 Ampere.
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V