Answer:
by using formula F=ma which is m stand for mass a stand for acceleration. so 500kg × 2 ms^-2
Answer:

Explanation:
Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

Due to the definition of cross product, the magnitude of the torque is given by:

Where
is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when
is equal to one, solving for r:

Answer:
The speed in the first point is: 4.98m/s
The acceleration is: 1.67m/s^2
The prior distance from the first point is: 7.42m
Explanation:
For part a and b:
We have a system with two equations and two variables.
We have these data:
X = distance = 60m
t = time = 6.0s
Sf = Final speed = 15m/s
And We need to find:
So = Inicial speed
a = aceleration
We are going to use these equation:


We are going to put our data:


With these equation, you can decide a method for solve. In this case, We are going to use an egualiazation method.



![[\sqrt{(15m/s)^2-(2*a*60m)}]^{2}=[15m/s-(a*6s)]^{2}](https://tex.z-dn.net/?f=%5B%5Csqrt%7B%2815m%2Fs%29%5E2-%282%2Aa%2A60m%29%7D%5D%5E%7B2%7D%3D%5B15m%2Fs-%28a%2A6s%29%5D%5E%7B2%7D)








If we analyze the situation, we need to have an aceleretarion greater than cero. We are going to choose a = 1.67m/s^2
After, we are going to determine the speed in the first point:




For part c:
We are going to use:




Answer:
A. Create radioactive waste i believe
Explanation:
Answer:
0.00066518 Nm
Explanation:
v = Velocity = 1.2 m/s
r = Distance to head = 2.3 cm
= Final angular velocity
= Initial angular velocity = 0
= Angular acceleration
t = Time taken = 2.4 s
Angular speed is given by

From equation of rotational motion

Torque

The torque of the motor is 0.00066518 Nm