Answer:
The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.
Explanation:
1) <u>Effect on Frequency </u>
According to Doppler's effect of sound we have
for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

where
c = speed of sound in air
is the velocity of observer of sound
is the velocity of source of sound
is the original frequency of sound
As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.
2) <u>Effect on Intensity:</u>
At a distance 'r' from source emitting a wave of Power 'P' is given by

As we see on increasing 'r' intensity of sound decreases.
Answer:

Explanation:
Given:
- mass of monkey,

- angle of vine from the vertical,

Now follow the schematic to understand the symmetry and solution via Lami's theorem.
<u>The weight of the monkey will be balanced equally by the tension in both the vines:</u>
Using Lami's Theorem:



Answer:
The value is 
Explanation:
From the we are told that
The radius of the sphere is 
The temperature is 
The average temperature of the rest of the universe is 
Generally the change in entropy of the entire universe per second is mathematically represented as

Here
is the entropy of the rest of the universe which is mathematically represented as

Here Q is the quantity of heat radiated by the star which is mathematically represented as

Here
is the Stefan-Boltzmann constant with value

=> 
=> 
So

=> 
Here
is the entropy of the rest of the universe which is mathematically represented as

=>
=>
So
=> 
C. Elements
elements are found in periodic table (in 1 box)
Answer:
The radius of the curve that Car 2 travels on is 380 meters.
Explanation:
Speed of car 1, 
Radius of the circular arc, 
Car 2 has twice the speed of Car 1, 
We need to find the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration. We know that the centripetal acceleration is given by :

According to given condition,


On solving we get :

So, the radius of the curve that Car 2 travels on is 380 meters. Hence, this is the required solution.