answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
2 years ago
5

What is the minimum speed with which he’d need to run off the edge of the cliff to make it safely to the far side of the river?

the answer was 6 m/s the world-record time for the 100 m dash is approximately 10 s. given this, is it reasonable to expect brady to be able to run fast enough to achieve brady's leap?
a.yes, the obtained speed is less than the world-record.
b.yes, the obtained speed is almost equal to the world-record.
c.no, the obtained speed is greater than the world-record.
d.no, the obtained speed is almost equal to the world-record.

Physics
2 answers:
Vladimir [108]2 years ago
7 0

Part (a): The minimum speed of Brady should be \boxed{6\text{ m/s}} to cross the cliff.

Part (b): The speed of Brady’s leap is possible to achieve, as it is less than the speed of world record.

Further Explanation:

(a)

Brady jumps from a cliff to go on other side. He crosses 22\text{ ft} horizontal distance from a height of 20\text{ft}. To jump from cliff, he follows the Newton’s law of motion.

Given:

The horizontal distance is 22\text{ ft}.

The vertical distance is 20\text{ft}.

Concept:

The horizontal distance in meter is 6.71\text{ m}.

The vertical distance in meter is 6.10\text{ m}.

To obtain the time of flight, applying one of the equation of motion given as:

s=ut+\dfrac{1}{2}at^2

Substitute 0\text {m/s} for u and rearrange the above equation for t :

t=\sqrt{\dfrac{2s}{a} }

Substitute 6.10\text{ m} for s and 9.81\text{ m}/\text{s}^2 for a in above equation.

\begin{aligned}t&=\sqrt{\dfrac{2\times6.10}{9.81}}\text{ s}\\&=1.12\text{ s}\end{aligned}

The time of flight and time taken to cover horizontal distance are equal.

Horizontal velocity of Brady given as:

\begin{aligned}v&=\dfrac{6.71}{1.12}\text{ m/s}\\&\approx6\text{ m/s}\end{aligned}

Thus, the minimum speed of Brady should be \boxed{6\text{ m/s}} to cross the cliff.

(b)  

The minimum speed with which Brady is running is 6\text{ m/s}.

The speed of world record given as:

\begin{aligned}V&=\frac{100}{10}\text{ m/s}\\&=10\text{ m/s}\end{aligned}  

Thus, the speed of Brady’s leap is possible to achieve, as it is less than the speed of world record.

Learn more:

1. Projectile motion of a body: brainly.com/question/11023695

2. Body in pure rolling motion: brainly.com/question/9575487

3. Newton’s law of motion: brainly.com/question/6125929

Answer Details:

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords:

1780, Brady's Leap, Captain, Sam, U.S. Continental Army, horizontally, cliff, Ohio's Cuyahoga, gorge, leap, 22 ft, 20 ft, minimum, speed, river, 100 m, dash, 10 s, jump, time of flight, vertical and distance.

Angelina_Jolie [31]2 years ago
4 0

The answer is

A. Yes, the obtained speed is less than the world record

The explanation:

when the obtained speed is 6 m /s

and the world record speed = distance / time = 100 m / 10 s = 10 m/s

So, Yes, the obtained speed is less than the world record

Not only is it less, its also a reasonable average speed for a somewhat athletic person. Therefore, the leap is entirely possible.

-Samuel Brady gained his lasting notoriety for his leap over the Cuyahoga River around 1780 in what is now Kent, Ohio. After following a band of Indians into the Ohio country, a failed ambush attempt resulted in the band chasing Brady near the Cuyahoga River. To avoid capture, Brady leaped across a 22-foot (6.7 m) wide gorge of the river (which was widened considerably in the 1830s for construction of the Pennsylvania and Ohio Canal) and fled to a nearby lake where he hid in the water under a fallen tree using a reed for air.

You might be interested in
What type of light does this light bulb produce most (i.e. at what wavelength does the spectrum have maximum intensity)?
lesantik [10]

Answer: The light bulb produces the continuous light. At minimum wavelength the spectrum have maximum intensity.

Explanation:

According to Wein's displacement law, the wavelength is inversely proportional to the temperature.

The intensity depends on the frequency. The frequency is inversely proportional to the wavelength.

Therefore, when the temperature of the light bulb will be maximum then the wavelength will be minimum. At minimum wavelength the spectrum have maximum intensity.

4 0
2 years ago
An object moving at a velocity of 32m/s slows to a stop in 4 seconds. What was its acceleration?
Romashka [77]

Answer:

8m/s

Explanation:

a=d/t

a=32/4

a=8 m/s

6 0
2 years ago
Read 2 more answers
A 0.050 kg bullet strikes a 5.0 kg wooden block with a velocity of 909 m/s and embeds itself in the block which fies off its sta
serg [7]

Answer:

The final velocity of the bullet is 9 m/s.

Explanation:

We have,

Mass of a bullet is, m = 0.05 kg

Mass of wooden block is, M = 5 kg

Initial speed of bullet, v = 909 m/s

The bullet embeds itself in the block which flies off its stand. Let V is the final velocity of the bullet. The this case, momentum of the system remains conserved. So,

mv=(m+M)V\\\\V=\dfrac{mv}{m+M}\\\\V=\dfrac{0.05\times 909}{0.050+5}\\\\V=9\ m/s

So, the final velocity of the bullet is 9 m/s.

5 0
2 years ago
Two convex thin lenses with focal lengths 10.0 cm and 20.0 cm are aligned on a common axis, running left to right, the 10-cm len
love history [14]

Answer:

(c) +6.67

Explanation:

f1 = 10 cm

f2 = 20 cm

u = Object distance = 15 cm

Distance between lenses = 20 cm

For first lens image distance

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{10}-\frac{1}{15}\\\Rightarrow \frac{1}{v}=\frac{1}{30}\\\Rightarrow v=30\ cm

Distance from second lens is 10 cm to the right

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{20}-\frac{1}{-10}\\\Rightarrow \frac{1}{v}=\frac{3}{20}\\\Rightarrow v=6.67\ cm

The final image will appear as +6.67 cm

3 0
2 years ago
A cart is pushed to the right with a force of 15 N while being pulled to the left with a force of 20 N. The net force on the car
9966 [12]

The net force of the cart when it is pushed to the right with a force of 15N.

<u>Explanation:</u>

To find the force of net, which is calculated by the  formula.

The Net Force= Addition of the force applied on the respective  direction.

The Net Force here is given by

The Net Force = 15-20 (A force towards the right and a force towards left, two opposite so subtraction).

Hence

Thus the Net Force = -5(The force towards left, so it gets a  negative value).

5 0
2 years ago
Other questions:
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    7·1 answer
  • Police officer at rest at the side of the highway
    12·1 answer
  • The following diagram shows resistors in ___ and is ____ of the arrangement of circuit elements in homes.
    6·2 answers
  • A novice pilot sets a plane’s controls, thinking the plane will fly at 2.50 × 102 km/h to the north. if the wind blows at 75 km/
    15·1 answer
  • Two identical loudspeakers that are 5.00 m apart and face toward each other are driven in phase by the same oscillator at a freq
    11·1 answer
  • A student, along with her backpack on the floor next to her, are in an elevator that is accelerating upward with acceleration a.
    12·1 answer
  • A transformer is to be used to provide power for a computer drive. The number of turns in the primary is 1000, and it delivers a
    10·1 answer
  • A 50 kg rocket generates 990 N of thrust. What will be its acceleration if it is launched straight up?
    13·1 answer
  • A meteoroid, heading straight for Earth, has a speed of 14.8 km/s relative to the center of Earth as it crosses our moon's orbit
    5·1 answer
  • An overhead projector lens is 32.0 cm from a slide (the object) and has a focal length of 30.1 cm. What is the magnification of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!