The unit 'mb' means millibar which is equivalent to 1/1000 of 1 bar. To convert the units from bar to atmospheres (atm) and to inches Hg (inHg), we need to know the conversion factors.
a.) 1 atm = 1.01325 bar
0.92 mb(1 bar/1000 mbar)(1 atm/1.01325 bar) =<em> 9.08×10⁻⁴ atm</em>
b.) 1 bar = 29.53 inHg
0.92 mb(1 bar/1000 mbar)(29.53 inHg/1 bar) =<em> 0.027 inHg</em>
Answer:
72.98 km
Explanation:
Her displacement is simply the distance from her final position to her initial position.
Now, I've drawn and attached a triangle diagram to depict this her movement.
Point O is her initial starting point.
Point A is the first point she gets to after travelling north while point B is the final point after travelling north east.
From the triangle, the displacement will be the distance OB which is denoted by x and can be solved from cosine rule.
Thus;
x² = 62² + 26² - 2(62 × 26)cos 120
x² = 4520 + 806
x² = 5326
x = √5326
x = 72.98 km
Answer:
When the speed of the bottle is 2 m/s, the average maximum height of the beanbag is <u>0.10</u> m.
When the speed of the bottle is 3 m/s, the average maximum height of the beanbag is<u> 0.43</u> m.
When the speed of the bottle is 4 m/s, the average maximum height of the beanbag is <u>0.87</u> m.
When the speed of the bottle is 5 m/s, the average maximum height of the beanbag is <u>1.25</u> m.
When the speed of the bottle is 6 m/s, the average maximum height of the beanbag is <u>1.86</u> m.
Sorry for not answering early on! If anyone in the future needs help, I got these answers from 2020 egenuity, though I can't post the picture for proof. Stay Safe!
Answer:
f_D = =3.24 N/m
Explanation:
data given
properties of air

k = 0.0288 W/m.K
WE KNOW THAT
Reynold's number is given as


= 1.941 *10^4
drag coffecient is given as

solving for f_D


Drag coffecient for smooth circular cylinder is 1.1
therefore Drag force is

f_D = =3.24 N/m