Answer:
H = 109.14 cm
Explanation:
given,
Assume ,
Total energy be equal to 1 unit
Balance of energy after first collision = 0.78 x 1 unit
= 0.78 unit
Balance after second collision = 0.78 ^2 unit
= 0.6084 unit
Balance after third collision = 0.78 ^3 unit
= 0.475 unit
height achieved by the third collision will be equal to energy remained
H be the height achieved after 3 collision
0.475 ( m g h) = m g H
H = 0.475 x h
H = 0.475 x 2.3 m
H = 1.0914 m
H = 109.14 cm
Answer:

Explanation:
we know angular velocity in terms of moment of inertia and angular speed
ω .... (1)
moment of inertia of rod rotating about its center of length b
........ .(2)
using v = ωr
where w is angular velocity
and r is radius of rod which is equal to b
so we get 2v = ωb
ω = 2v/b ................. (3)
here velocity is two time because two opposite ends are moving opposite with a velocity v so net velocity will be 2v
put second and third equation in ist equation
×
so final answer will be 
I can't seem to figure out the angle between T1 and T2. So suppose, it is 10º; then T2 makes an angle of 35º w/r/t horizontal, and T1 makes an angle of 45º.
Sum the moments about the base of the crane; Σ M = 0. 0 = T2*cos35*L*cos40 + T1*cos45*L*cos40 - T2*sin35*L*sin40 - T1*sin45*L*sin40 - W*(L/2)*sin40 - T1*L*sin40 → length L cancels where W = 18 kN
0 = 0.259*T2 - 43kN T2 = 166 kN
Answer:
a)
Explanation:
- A block sliding down an inclined plane, is subject to two external forces along the slide.
- One is the component of gravity (the weight) parallel to the incline.
- If the inclined plane makes an angle θ with the horizontal, this component (projection of the downward gravity along the incline, can be written as follows:

(taking as positive the direction of the movement of the block)
- The other force, is the friction force, that adopts any value needed to meet the Newton's 2nd Law.
- When θ is so large, than the block moves downward along the incline, the friction force can be expressed as follows:
- The normal force, adopts the value needed to prevent any vertical movement through the surface of the incline:
- In equilibrium, both forces, as defined in (1), (2) and (3) must be equal in magnitude, as follows:

- As the block is moving, if the net force is 0, according to Newton's 2nd Law, the block must be moving at constant speed.
- In this condition, the friction coefficient is the kinetic one (μk), which can be calculated as follows:
