<span>Mechanical association learning used by an actor to memorize his lines</span>
To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,
The energy of the system having mass m is,

The energy of the system having mass 2m is,

For the two expressions mentioned above remember that the variables mean
m = mass
Angular velocity
A = Amplitude
The energies of the two system are same then,



Remember that

Replacing this value we have then


But the value of the mass was previously given, then



Therefore the ratio of the oscillation amplitudes it is the same.
Answer:
35 288 mile/sec
Explanation:
This is a problem of special relativity. The clocks start when the spaceship passes Earth with a velocity v, relative to the earth. So, out and back from the earth it will take:

If we use the Lorentz factor, then, as observed by the crew of the ship, the arrival time will be:

Then the amount of time wil expressed as a reciprocal of the Lorentz factor. Thus:


solving for v, gives = 35 288 miles/s
Answer:
The weight if the block is 10Newtons
Explanation:
The weight of any object is quantity of matter the object contains and it is always acting downwards on such body. This shows that the object is under the influence of gravity.
The weight of an object is calculated as mass of the object × its acceleration due to gravity
W = mg
Give the mass of the brick to be 1kg
g is the acceleration due to gravity = 10m/s²
Weight of the object = 1 × 10
= 10kgm/s² or 10Newtons