answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makvit [3.9K]
2 years ago
10

In the vertical jump, an Kobe Bryant starts from a crouch and jumps upward to reach as high as possible. Even the best athletes

spend little more than 1.00 s in the air (their "hang time"). Treat Kobe as a particle and let ymax be his maximum height above the floor. Note: this isn't the entire story since Kobe can twist and curl up in the air, but then we can no longer treat him as a particle.
To explain why he seems to hang in the air, calculate the ratio of the time he is above ymax/2 moving up to the time it takes him to go from the floor to that height. You may ignore air resistance.
Physics
1 answer:
Dafna1 [17]2 years ago
3 0

Answer:

the athlete spends 2.4 times more time at the upper part of his way than in the lower one.

Explanation:

Let’s find the velocity V1 of an athlete to reach half of the maximum height equation

V1 = v20 -2gh = v20 -2g(ymax)/2

Here, Vo is the initial velocity of athlete, v1 is the velocity of athlete at half the maximum height, g is the acceleration due to gravity, h=ymax /2 is half of the maximum height.

We can fund the maximum height that athlete can reach from the law of conservation of energy

KE = PE

1/2M v20 = mg ymax

ymax = v20 /2g

Then, substituting ymax into the first equation we get

V21 = v20 – v20/2 = v20/2

V1 = V0/∫2, we can find the time that the athlete needs to reach the maximum height (ymax) from the kinematic equation

V = V0 – gt

Here, V is the final velocity of an athlete at the maximum height; V0 is the initial velocity of an athlete

Since, V=0ms-1, we get t=V0/g

Similarly, we can find the time t1 that an athlete needs to reach maximum height from the Ymax/2:

T1 = V1/g =V0/g∫2

So, it is obvious that the time to reach Ymax from Ymax/2 is nothing more than the difference between t and t1:

t-t1 =V0/g(1-1/∫2)

finally, we can calculate the ratio of the time he is above Ymax/2 to the time it takes him to go from floor to that height.

T1/t-t1 =V0/g∫2V0 ×g∫2/∫2-1 =2.4

Answer; the athlete spends 2.4 times more time at the upper part of his way than in the lower one.

You might be interested in
Two hockey players skating on essentially frictionless ice collide head-on. Madeleine, of mass 65.0 kg, is moving at 6.00 m/s to
xeze [42]

Explanation:

It is given that,

Mass of Madeleine, m_1=65\ kg

Initial speed of Madeleine, u_1=6\ m/s (due east)

Final speed of Madeleine, v_1=-3\ m/s (due west)

Mass of Buffy, m_2=55\ kg

Final speed of Buffy, v_2=3.5\ m/s (due east)

Let u_1 is the Buffy's velocity just before the collision. Using the conservation of linear momentum as :

m_1u_1+m_2u_2=m_1v_1+m_2v_2

65\times 6+55\times u_2=65\times (-3)+55\times 3.5

u_2=-7.13\ m/s

So, the initial speed of the Buffy just before the collision is 7.13 m/s and it is moving due west. Hence, this is the required solution.

5 0
2 years ago
James Joule (after whom the unit of energy is named) claimed that the water at the bottom of Niagara Falls should be warmer than
Molodets [167]

Answer:

0.12 K

Explanation:

height, h = 51 m

let the mass of water is m.

Specific heat of water, c = 4190 J/kg K

According to the transformation of energy

Potential energy of water = thermal energy of water

m x g x h = m x c x ΔT

Where, ΔT is the rise in temperature

g x h =  c x ΔT

9.8 x 51 = 4190 x ΔT

ΔT = 0.12 K

Thus, the rise in temperature is 0.12 K.

7 0
2 years ago
An owl has a mass of 4.00 kg. It dives to catch a mouse, losing 800.00 J of its GPE. What was the starting height of the owl, in
vesna_86 [32]

Answer:

height =20m

Explanation:

gpe=mgh

800=4×10×x

40x=800

x=20

3 0
2 years ago
Jeff of the Jungle swings on a 7.6-m vine that initially makes an angle of 32 ∘ with the vertical.
shtirl [24]

To solve this problem we will use the trigonometric concepts to find the distance h, which will allow us to find the speed of Jeff and that will finally be the variable that will indicate the total tension, since it is the variable of the centrifugal Force given in the vine at the lowest poing of the swing.

From the image:

cos (32) = \frac{(7.6-h)}{7.6}

h = 1.1548m

When Jeff reaches his lowest point his potential energy is converted to kinetic energy

PE = KE

mgh = \frac{1}{2} mv^2

v = \sqrt{2gh}

v = \sqrt{2(9.8)(1.1548)}

v= 4.75m/s

Tension in the string at the lowest point is sum of weight of Jeff and the his centripetal force

T = W+F_c

T = mg + \frac{mv^2}{r}

T = (83)(9.8)+\frac{(9.8)( 4.75)^2}{7.6}

T = 842.49N

Therefore the tension in the vine at the lowest point of the swing is 842.49N

3 0
2 years ago
The difference in heights of the liquid in the two sides of the manometer is 43.4 cm when the atmospheric pressure is 755 mm hg.
Schach [20]

The atmospheric P is greater than the P in the flask, since the Hg level is lacking down lower on the side open to the atmosphere. 

43.4 cm x (10 mm / 1 cm) = 435 mm 

the density of Hg is 13.6 / 0.791 = 17.2 times better than the liquid in the manometer. This means that 1 mmHg = 17.2 mm of manometer liquid. 

435 mm manometer liquid x (1 mm Hg / 17.2 mm manometer liquid) = 25.3 mm Hg 

The pressure in the flask is 755 - 25.3 = 729.7 mmHg. 

729.7 mmHg x (1 atm / 760 mmHg ) = 0.960 atm.

4 0
2 years ago
Other questions:
  • A biker travels at an average speed of 18 km/hr along a 0.30 km straight segment of a bike path. How much time (in hours) does t
    12·1 answer
  • g A projectile is launched with speed v0 from point A. Determine the launch angle ! which results in the maximum range R up the
    12·1 answer
  • A car moving with constant acceleration covers the distance between two points 60 m apart in 6.0 s. Its speed as it passes the s
    11·1 answer
  • Which is not a characteristic of an ideal fluid?
    9·1 answer
  • A sports car accelerates from 0 to 30 mph in 1.5 s. How long would it take to accelerate from 0 to 60 mph, assuming the power of
    8·1 answer
  • Suppose you analyze standardized test results for a country and discover almost identical distributions of physics scores for fe
    6·1 answer
  • Which shows the correct lens equation? The inverse of f equals the inverse of d Subscript o Baseline times the inverse of d Subs
    16·2 answers
  • A small glass bead charged to 8.0 nC is in the plane that bisects a thin, uniformly charged, 10-cm long glass rod and is 4.0 cm
    5·1 answer
  • A 1-kg mass is dropped from a third floor window. The acceleration of the mass is found to be 8 m/s2. What is the average force
    5·1 answer
  • What force is acting on the rainwater in the model?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!