answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
2 years ago
8

Suppose a person has a small intestine that has fewer villi than normal. Would the person most likely be overweight or underweig

ht? Explain.
Physics
1 answer:
Mekhanik [1.2K]2 years ago
4 0
They would be likely to be underweight. This is because the role of villi is to increase absorption of soluble molecules, they do this by increasing surface area for absorption to occur across.
If the person has less villi than normal in their small intestine, then the surface area will not be as large meaning there is less area for absorption to occur across so less soluble molecules will be absorbed.
You might be interested in
An auto moves 10 meters in the first second of travel, 15 more meters in the next second, and 20 more meters during the third se
k0ka [10]

im guessing it's 5 m/s

6 0
2 years ago
The free-electron density in a copper wire is 8.5×1028 electrons/m3. The electric field in the wire is 0.0520 N/C and the temper
meriva

Answer:

(a) 1.87 x 10⁻⁴ m/s

(b) 0.013V

Explanation:

(a) Drift speed, v_{d} , is the average velocity that a charged particle can have due to an electric field. For a given current, I, the drift velocity is given by;

v_{d} = \frac{I}{qnA}             ----------------(i)

Where;

q = amount of charge

n = free charge density

A = cross-sectional area of the wire

But current density, J, is the electric current per unit cross-section area. This  is also equal to the ratio of the electric field, E, to the resistivity, p, of the material of the wire. i.e

J = \frac{I}{A} = \frac{E}{p}

Equation (i) can then be written as follows;

v_{d} = \frac{J}{qn} = \frac{E}{qnp}

v_{d} = \frac{E}{qnp}      ---------------------(ii)

From the question;

E = 0.0520N/C

p = 1.72 x 10⁻⁸ Ωm

n = 8.5 x 10²⁸ electrons/m³

c = charge on electron = 1.9 x 10⁻¹⁹C

Substitute these values into equation (ii) as follows;

v_{d} = \frac{0.0520}{1.9*10^{-19} * 8.5*10^{28} * 1.72*10^{-8}}

v_{d} = 1.87 x 10⁻⁴ m/s

(b) The potential difference, V, is given by the product of the electric field and the distance, d, between the two points in the wire. i.e

V = E x d        [where d = 25.0cm = 0.25m]

V = 0.0520 x 0.25

V = 0.013V

4 0
2 years ago
Force F acts between two charges, q1 and q2, separated by a distance d. If q1 is increased to twice its original value and the d
Step2247 [10]
Okay, haven't done physics in years, let's see if I remember this.

So Coulomb's Law states that F = k \frac{Q_1Q_2}{d^2} so if we double the charge on Q_1 and double the distance to (2d) we plug these into the equation to find

<span>F_{new} = k \frac{2Q_1Q_2}{(2d)^2}=k \frac{2Q_1Q_2}{4d^2} = \frac{2}{4} \cdot k \frac{Q_1Q_2}{d^2} = \frac{1}{2} \cdot F_{old}</span>

So we see the new force is exactly 1/2 of the old force so your answer should be \frac{1}{2}F if I can remember my physics correctly.

9 0
2 years ago
Read 2 more answers
As a runner crosses the finish line of a race, she starts decelerating from a velocity of 9 m/s at a rate of 2 m/s^2. Take the r
Ksivusya [100]

Answer:

- 1 m/s, 20 m

Explanation:

u = 9 m/s, a = - 2 m/s^2, t = 5 sec

Let s be the displacement and v be the velocity after 5 seconds

Use first equation of motion.

v = u + a t

v = 9 - 2 x 5 = 9 - 10 = - 1 m/s

Use second equation of motion

s = u t + 1/2 a t^2

s = 9 x 5 - 1/2 x 2 x 5 x 5

s = 45 - 25 = 20 m

4 0
1 year ago
An object of mass 24kg is accelerated up a frictionless place incline at an angle of 37° with horizontal by a constant force, st
RoseWind [281]

a) Average power: 1425 W

b) Instantaneous power at 3.0 sec: 2850 W

Explanation:

a)

The motion of the object along the ramp is a uniformly accelerated motion (because the force applied is constant), so we can use the suvat equation

s=ut+\frac{1}{2}at^2

where

s = 18 m is the displacement along the ramp

u = 0 is the initial velocity

t = 3.0 s is the time taken

a is the acceleration of the object along the ramp

Solving for a,

a=\frac{2s}{t^2}=\frac{2(18)}{(3.0)^2}=4 m/s^2

Now we can apply Newton's second law to find the net force on the object:

F=ma=(24 kg)(4 m/s^2)=96 N

This net force is the resultant of the applied force forward (F_a) and the component of the weight acting backward (mg sin \theta), so we can find what is the applied force:

F=F_a - mg sin \theta\\F_a = F+mg sin \theta = 96+(24)(9.8)(sin 37^{\circ})=237.5 N

where

m = 24 kg is the mass of the object

g=9.8 m/s^2 is the acceleration of gravity

Now we can finally find what is the work done by the applied force, which is parallel to the ramp, therefore:

W=F_a s = (237.6)(18)=4276 J

where s = 18 m is the displacement.

Therefore the average power needed is:

P=\frac{W}{t}=\frac{4276}{3}=1425 W

b)

The instantaneous power at any point of the motion is given by

P=F_av

where

F_a is the force applied

v is the velocity of the object

We already calculated the applied force:

F_a=237.5 N

While since this is a uniformly accelerated motion, we can find the velocity at the end of the 3.0 seconds using the suvat equation:

v=u+at=0+(4)(3.0)=12.0 m/s

And therefore, the instantaeous power at 3.0 sec is:

P=Fv=(237.5)(12)=2850 W

Learn more about power:

brainly.com/question/7956557

#LearnwithBrainly

8 0
2 years ago
Other questions:
  • What units are given to the right of the equals sign
    10·1 answer
  • Alonzo sprints for 500 meters along a straight track during a race. After crossing the finish line, he to walks back along the t
    14·2 answers
  • A student has derived the following nondimensionally homogeneous equation:a=xt2−vt+Fmwhere v is a velocity's magnitude, a is an
    9·1 answer
  • The lighting needs of a storage room are being met by six fluorescent light fixtures, each fixture containing four lamps rated a
    14·1 answer
  • A 480 g peregrine falcon reaches a speed of 69 m/s in a vertical dive called a stoop. If we assume that the falcon speeds up und
    7·1 answer
  • The motion of a particle connected to a spring is described by x = 10 sin (pi*t). At
    8·1 answer
  • A moving sidewalk has a velocity of 1.7m/s north. if a man walks 1.1m/s, how long does it take him to travel 15m north in relati
    8·1 answer
  • A series circuit contains an 80-μF capacitor, a 0.020-H inductor, and a switch. The resistance of the circuit is negligible. Ini
    14·1 answer
  • Water initially at 200 kPa and 300°C is contained in a piston–cylinder device fitted with stops. The water is allowed to cool at
    12·1 answer
  • Gibbons, small Asian apes, move by brachiation, swinging below a handhold to move forward to the next handhold. A 8.6 kg gibbon
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!