answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tankabanditka [31]
1 year ago
10

A leopard of mass 65 kg climbs 7 m up a tall tree. Calculate how much gravitational potential energy it gains. Assume g = 10 N/k

g.
Physics
1 answer:
Kay [80]1 year ago
3 0

Mass of Leopard = 65 kg

Height = 7 m

P.E  = ?

We know,

P.E = mgh

      = 65 * 10 * 7=4550 J

You might be interested in
calculate the time rate of change in air density during expiration. Assume that the lung has a total volume of 6000mL, the diame
kipiarov [429]

Answer:

The time rate of change in air density during expiration is 0.01003kg/m³-s

Explanation:

Given that,

Lung total capacity V = 6000mL = 6 × 10⁻³m³

Air density p = 1.225kg/m³

diameter of the trachea is 18mm = 0.018m

Velocity v = 20cm/s = 0.20m/s

dv /dt = -100mL/s (volume rate decrease)

= 10⁻⁴m³/s

Area for trachea =

\frac{\pi }{4} d^2\\= 0.785\times 0.018^2\\= 2.5434 \times10^-^4m^2

0 - p × Area for trachea =

\frac{d}{dt} (pv)=v\frac{ds}{dt} + p\frac{dv}{dt}

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

⇒-0.623133\times10^-^4+1.225\times10^-^4=6\times10^-^3\frac{ds}{dt}

           \frac{ds}{dt} = \frac{0.6018\times10^-^4}{6\times10^-^3} \\\\= 0.01003kg/m^3-s

ds/dt = 0.01003kg/m³-s

Thus, the time rate of change in air density during expiration is 0.01003kg/m³-s

3 0
1 year ago
Read 2 more answers
Sunlight strikes a piece of crown glass at an angle of incidence of 38.0°. Calculate the difference in the angle of refraction b
zhuklara [117]

Answer:

Difference in the angle of refraction = 0.3°

41.04° is the minimum angle of incidence.

Explanation:

Angle of incidence  = 38.0°

For yellow light :

Using Snell's law as:

\frac {sin\theta_2}{sin\theta_1}=\frac {n_1}{n_2}

Where,  

Θ₁ is the angle of incidence

Θ₂ is the angle of refraction

n₁ is the refractive index for yellow light which is 1.523

n₂ is the refractive index of air which is 1

So,  

\frac {sin\theta_2}{sin{38.0}^0}=\frac {1.523}{1}

{sin\theta_2}=0.9377

Angle of refraction for yellow light = sin⁻¹ 0.9377 = 69.67°.

For green light :

Using Snell's law as:

\frac {sin\theta_2}{sin\theta_1}=\frac {n_1}{n_2}

Where,  

Θ₁ is the angle of incidence

Θ₂ is the angle of refraction

n₁ is the refractive index for green light which is 1.526

n₂ is the refractive index of air which is 1

So,  

\frac {sin\theta_2}{sin{38.0}^0}=\frac {1.526}{1}

{sin\theta_2}=0.9395

Angle of refraction for green light = sin⁻¹ 0.9395 = 69.97°.

The difference in the angle of refraction = 69.97° - 69.67° = 0.3°

Calculation of the critical angle for the yellow light for the total internal reflection to occur :

The formula for the critical angle is:

{sin\theta_{critical}}=\frac {n_r}{n_i}

Where,  

{\theta_{critical}} is the critical angle

n_r is the refractive index of the refractive medium.

n_i is the refractive index of the incident medium.

n₁ is the refractive index for yellow light which is 1.523 (incident medium)  

n₂ is the refractive index of air which is 1 (refractive medium)

Applying in the formula as:

{sin\theta_{critical}}=\frac {1}{1.523}

The critical angle is = sin⁻¹ 0.6566 = 41.04°

5 0
2 years ago
A 2.0-cm length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnet
Mumz [18]
<h3>Question:</h3>

A 2.0-cm length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x = 5.0m on the x-axis.

<h3>Answer:</h3>

1.6nT [in the negative z direction]

<h2>Explanation:</h2>

The magnetic field, B, due to a distance of finite value b, is given by;

B = (μ₀IL) / (4πb\sqrt{b^2 + L^2})                -----------(i)

Where;

I = current on the wire

L = length of the wire

μ₀ = magnetic constant = 4π × 10⁻⁷ H/m

From the question,

I = 20A

L = 2.0cm = 0.02m

b = 5.0m

Substitute the necessary values into equation (i)

B = (4π × 10⁻⁷ x 20 x 0.02) / (4π x 5.0 \sqrt{5.0^2 + 0.02^2})

B = (10⁻⁷ x 20 x 0.02) / (5.0 \sqrt{5.0^2 + 0.02^2})

B = (10⁻⁷ x 20 x 0.02) / (5.0 \sqrt{25.0004})

B = (10⁻⁷ x 20 x 0.02) / (25.0)

B = 1.6 x 10⁻⁹T

B = 1.6nT

Therefore, the magnetic field at the point x = 5.0m  on the x-axis is 1.6nT.

PS: Since the current is directed in the positive y direction, from the right hand rule, the magnetic field is directed in the negative z-direction.

5 0
2 years ago
A hummingbird 3.4m above the ground flies 1.2 m along a straight line path. Upon spotting a flower below, the hummingbird drops
Anit [1.1K]

A = horizontal displacement of the humming bird = 1.2 m

B = vertical displacement of the humming bird = 1.4 m

C = net displacement of the humming bird from initial to final position = ?

In the triangle drawn , Using Pythagorean theorem

C = √(A² + B²)

inserting the values

C = √(1.2² + 1.4²)

C = √(1.44 + 1.96)

C = √(3.4)

C = 1.4 m

Hence the net displacement of hummingbird comes out to be 1.4 m

4 0
1 year ago
Read 2 more answers
Nora tied a string around a tennis ball, and then she swung it in a circle in front of her to demonstrate a planet orbiting the
777dan777 [17]

<em>Choice-A </em>is a true statement. The string holding the ball in orbit is a contact force, whereas gravity is a non-contact force.

Choice-C is half-true.  The string keeps the distance between the bodies constant, but gravity doesn't "MAKE" the distance vary.

8 0
1 year ago
Read 2 more answers
Other questions:
  • Explain why is not advisable to use small values of I in performing an experiment on refraction through a glass prism?
    8·1 answer
  • What’s the force of a pitching machine on a baseball?
    5·2 answers
  • Military specifications often call for electronic devices to be able to withstand accelerations of 10 g. to make sure that their
    9·1 answer
  • Moving water, like that of a river, carries sediment as it moves along its bed. The faster the water flows, the more sediment th
    13·2 answers
  • What shape is the JET experimental fusion reactor?
    15·2 answers
  • You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
    7·1 answer
  • A 150-N box is being pulled horizontally in a wagon accelerating uniformly at 3.00 m/s2. The box does not move relative to the w
    11·1 answer
  • Quinn is testing the motion of two projectiles x and y by shooting them from a sling shot. What can we say best describes the mo
    14·2 answers
  • what will be the resistivity of a metal wire of 2m length and 0.6mm in a diameter ,if the resistance of the wire is 50ohm . find
    7·1 answer
  • 1. A liquid of mass 250g is heated with an electric heater. Its temperature rises from 30°C to 80°C, the specific heat capacity
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!