Answer:
The energy of this particle in the ground state is E₁=1.5 eV.
Explanation:
The energy
of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

So we can rewrite the energy in the ground state as:



Finally

10,000 units of momentum.
p=mv
20,000=m(2v)
10,000=mv
Answer:3.87*10^-4
Explanation:
What is the decrease in mass, delta mass Xe , of the xenon nucleus as a result of this deca
We have been given the wavelength of the gamma ray, find the frequency using c = freq*wavelength.
C=f*lambda
3*10^8=f*3.44*10^-12
F=0.87*10^20 hz
Then with the frequency, find the energy emitted using equation
E=hf E = freq*Plank's constant
E=.87*10^20*6.62*10^-34
E=575.94*10^(-16)
With this energy, convert into MeV from joules.
With the energy in MeV, use E=mc^2 using c^2 = 931.5 MeV/u.
Plugging and computing all necessary numbers gives you
3.87*10^-4 u.
The goal of Science is to expand knowledge.
Answer: Sean is standing still, and Rhea is running toward Sean while kicking the ball
Explanation: Your welcome :)