Answer:B When one bulb burns out, all the others lights stay lit.
Explanation:
Answer:395.6 m/s
Explanation:
Given
mass of bullet 
mass of wood block 
Length of string 
Center of mass rises to an height of 
initial velocity of bullet 
let
and
be the velocity of bullet and block after collision
Conserving momentum
-------------1
Now after the collision block rises to an height of 0.38 cm
Conserving Energy for block
kinetic energy of block at bottom=Gain in Potential Energy




substitute the value of
in equation 1


Answer:
a. 8.33 x 10 ⁻⁶ Pa
b. 8.19 x 10 ⁻¹¹ atm
c. 1.65 x 10 ⁻¹⁰ atm
d. 2.778 x 10 ⁻¹⁴ kg / m²
Explanation:
Given:
a.
I = 2500 W / m² , us = 3.0 x 10 ⁸ m /s
P rad = I / us
P rad = 2500 W / m² / 3.0 x 10 ⁸ m/s
P rad = 8.33 x 10 ⁻⁶ Pa
b.
P rad = 8.33 x 10 ⁻⁶ Pa *[ 9.8 x 10 ⁻⁶ atm / 1 Pa ]
P rad = 8.19 x 10 ⁻¹¹ atm
c.
P rad = 2 * I / us = ( 2 * 2500 w / m²) / [ 3.0 x 10 ⁸ m /s ]
P rad = 1.67 x 10 ⁻⁵ Pa
P₁ = 1.013 x 10 ⁵ Pa /atm
P rad = 1.67 x 10 ⁻⁵ Pa / 1.013 x 10 ⁵ Pa /atm = 1.65 x 10 ⁻¹⁰ atm
d.
P rad = I / us
ΔP / Δt = I / C² = [ 2500 w / m² ] / ( 3.0 x 10 ⁸ m/s)²
ΔP / Δt = 2.778 x 10 ⁻¹⁴ kg / m²
We use the equation of motion,

Here, S is the height, u is initial velocity and a is acceleration.
Given,
As acorn falls from tree, therefore we take the value of
and initial velocity
.
Substituting these values in equation of motion,

Thus, the time taken by the acorn to fall 20 feet ( 6.096 m ) is 1.12 s.
Answer:
The correct option is C
Explanation:
The pendulum bob would return at the same time because the initial angle a pendulum bob is dropped does not affect it's period (the time it takes for the pendulum to move back and forth), however the one with a larger angle move faster but would eventually arrive at the same "starting point" due to varying displacements made.