answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
2 years ago
13

A ball is released from a tower at a height of 100 meters toward the roof of another tower that is 25 meters high. The horizonta

l distance between the two towers is 20 meters. With what horizontal velocity should the ball be imparted so that it lands on the rooftop of the second building?
Physics
1 answer:
Sindrei [870]2 years ago
3 0
Let's figure out how long it will take to fall 75 meters, from the 1st roof to the second roof. We can assume that gravity is the only force affecting vertical velocity, so the ball starts from rest and accelerates downward at g, or -9.8m/s².

Let's find how long it takes to fall 75 meters:
s(t) = Vi + (1/2)*a*t²,
where s(t) is displacement as a function of time, Vi is initial velocity (zero), and a is acceleration. Plugging in our values:
-75 = 0 + (1/2)(-9.8)(t²)      Multiply both sides by 2/-9.8
15.3 = t²                             Take the square root of both sides
t = 3.91

We need to the ball to travel 20 meters horizontally before it hits the roof in 3.91 seconds. We can assume that the horizontal velocity remains constant (a=0, Vi=V(t) for all t). 
Therefore, the minimum horizontal velocity is:
D = V*t , simple distance formula, distance equals velocity times time:
20 = V * 3.91       Divide both sides by 3.91
V = 5.11

The horizontal velocity, therefore, must be at least 5.11m/s in order for the ball to reach the roof of the second building. 
You might be interested in
The equilibrium fraction of lattice sites that are vacant in silver (Ag) at 600°C is 1 × 10-6. Calculate the number of vacancies
algol [13]

Answer :

The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.

Explanation:

Given,

Atomic mass of silver = 107.87 g/mol

Density of silver = 10.35 g/cm^3

Converting to g/m^3,

= 10.35 g/cm^3 × 10^6cm^3/m^3

= 10.35 × 10^6 g/m^3

Avogadro's number = 6.022 × 10^23 atoms/mol

Fraction of lattice sites that are vacant in silver = 1 × 10^-6

Nag = (Na * Da)/Aag

Where,

Nag = Total number of lattice sites in Ag

Na = Avogadro's number

Da = Density of silver

Aag = Atomic weight of silver

= (6.022 × 10^23 × (10.35 × 10^6)/107.87

= 5.778 × 10^28 atoms/m^3

The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6

= 5.778 × 10^22/m^3.

6 0
2 years ago
Two balls with charges +Q and +4Q are separated by 3R. Where should you place another charged ball Q0 on the line between the tw
azamat

Answer:

yes independent of the sign or valve of Q

Explanation:

7 0
2 years ago
You stand on a bathroom scale in a moving elevator. what happens to the scale reading if the cable holding the elevator suddenly
Viefleur [7K]

A bathroom scales works due to gravity. Under normal conditions, a reading can be obtained when your body is pushing some force on the scale. However in this case, since you and the scale are both moving downwards, so your body is no longer pushing on the scale. Therefore the answer is:

<span>The reading will drop to 0 instantly</span>

7 0
2 years ago
Read 2 more answers
How much heat Q1 is transferred by 25.0 g of water onto the skin? To compare this to the result in the previous part, continue t
hodyreva [135]

Answer:

The heat transferred  from water to skin  is 6913.5 J.

Explanation:

Given that,

Weight of water = 25.0 g

Suppose that water and steam, initially at 100°C, are cooled down to skin temperature, 34°C, when they come in contact with your skin. Assume that the steam condenses extremely fast. We will further assume a constant specific heat capacity c=4190 J/(kg°K) for both liquid water and steam.

We need to calculate the heat transferred  from water to skin

Using formula for stream

Q=mc\Delta T

Put the value into the formula

Q=25\times10^{-3}\times4190\times(373-307)

Q=6913.5\ J

Hence, The heat transferred  from water to skin  is 6913.5 J.

3 0
2 years ago
A long coaxial cable (Fig. 2.26) carries a uniform volume charge density rho on the inner cylinder (radius a), and a uniform sur
Yuki888 [10]

Answer:

a) E = ρ / e0

b) E = ρ*a / (e0 * r)

c) E = 0

Explanation:

Because of the geometry, the electric field lines will all have a radial direction.

Using Gauss law

Q/e0 = \int \int E * dA

Using a Gaussian surface that is cylinder concentric to the cable, the side walls will have a flux of zero, because the electric field lines will be perpendicular. The round wall of the cylinder will have the electric field lines normal to it.

We can make this cylinder of different radii to evaluate the electric field at different points.

Then:

A = 2*π*r (area of cylinder per unit of length)

Q/e0 = 2*π*r*E

E = Q / (2*π*e0*r)

Where Q is the charge contained inside the cylinder.

Inside the cable core:

There is a uniform charge density ρ

Q(r) = ρ * 2*π*r

Then

E = ρ * 2*π*r / (2*π*e0*r)

E = ρ / e0 (electric field is constant inside the charged cylinder.

Between ther inner cilinder and the tube:

Q = ρ * 2*π*a

E = ρ * 2*π*a / (2*π*e0*r)

E = ρ*a / (e0 * r)

Outside the tube, the charges of the core cancel each other.

E=0

4 0
2 years ago
Other questions:
  • A pressure cooker is a pot whose lid can be tightly sealed to prevent gas from entering or escaping. even without knowing how bi
    14·1 answer
  • Janice's mother often lets her 6-month-old baby sit in front of the television, watching episodes of Sesame Street. What is Jani
    5·1 answer
  • PLEASE ANSWER ACCURATELY DO NOT GUESS PLEASE AND THANK YOU
    10·1 answer
  • What are close-toed shoes least likely to provide protection against?
    14·2 answers
  • A silver wire 2.6 mm in diameter transfers a charge of 420 Cin 80 min. Silver contains 5.8 x 10^{28} free electrons per cubic me
    11·1 answer
  • The three point charges +4.0 μC, -5.0 μC, and -9.0 μC are placed on the x-axis at the points x = 0 cm, x = 40 cm, and x = 120 cm
    5·2 answers
  • When a 100-Ω resistor is connected across the terminals of a battery of emf ε and internal resistance r, the battery delivers 0.
    9·1 answer
  • During the 440, a runner changes his speed as he comes out of the curve onto the home stretch from 18 ft/sec to 38 ft/sec over a
    5·1 answer
  • A uniform disk has a mass of 3.7 kg and a radius of 0.40 m. The disk is mounted on frictionless bearings and is used as a turnta
    14·1 answer
  • A wind turbine with a rotor diameter of 40 m produces 90 kW of electrical power when the wind speed is 8 m/s. The density of air
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!