Answer:
Earth would continue moving by uniform motion, with constant velocity, in a straight line
Explanation:
The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:
"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"
This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.
In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.
Remember your kinematic equations for constant acceleration. One of the equations is

, where

= final position,

= initial position,

= initial velocity, t = time, and a = acceleration.
Your initial position is where you initially were before you braked. That means

= 100m. You final position is where you ended up after t seconds passed, so

= 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was

= 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
Your acceleration is approximately
.
The initial volume of the gas is

while its final volume is

so its variation of volume is

The pressure is constant, and it is

Therefore the work done by the gas is

where the negative sign means the work is done by the surrounding on the gas.
The heat energy given to the gas is

And the change in internal energy of the gas can be found by using the first law of thermodynamics:

where the positive sign means the internal energy of the gas has increased.
Answer:
buoyant force on the block due to the water= 10 N
Explanation:
We know that
buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.
Given:
A block of metal weighs 40 N in air and 30 N in water.
F_B = 40-30= 10 N
therefore, buoyant force on the block due to the water= 10 N
Answer: TRUST ME I GOT IT WRONG the answer is B
Explanation: