answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
2 years ago
6

A backyard swimming pool with a circular base of diameter 6.00 m is filled to depth 1.50 m. (a) Find the absolute pres- sure at

the bottom of the pool. (b) Two persons with com- bined mass 150 kg enter the pool and float quietly there. No water overflows. Find the pressure increase at the bottom of the pool after they enter the pool and float.
Physics
1 answer:
Aleksandr [31]2 years ago
6 0

Answer

given,

diameter = 6 m

depth = h = 1.5 m

Atmospheric pressure = P₀ = 10⁵ Pa

a) absolute pressure

P = P₀ + ρ g h

P = 10⁵ + 1000 x 10 x 1.5

P = 1.15 x 10⁵ Pa

b) When two person enters into the pool

mass of the two person = 150 Kg

    weight of water level displaced is equal to the weight of person

    ρ V g = 2 m g

     V = \dfrac{2 m}{\rho}

     V = \dfrac{2\times 150}{1000}

            V = 0.3 m³

Area of pool = \dfrac{\pi}{4}d^2

                    =\dfrac{\pi}{4}\times 6^2

                    = 28.27 m²

height of the water rise

        h = \dfrac{V}{A}

        h = \dfrac{0.3}{28.27}

               h = 0.0106 m

pressure increased

           P = ρ g h

           P = 1000 x 10 x 0.0106

           P = 106.103 Pa

You might be interested in
If gravity between the Sun and Earth suddenly vanished, Earth would continue moving in
Ksenya-84 [330]

Answer:

Earth would continue moving by uniform motion, with constant velocity, in a straight line

Explanation:

The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:

"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"

This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.

In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.

6 0
2 years ago
When a car is 100 meters from its starting position traveling at 60.0 m/s., it starts braking and comes to a stop 350 meters fro
NISA [10]
Remember your kinematic equations for constant acceleration. One of the equations is x_{f} =  x_{i} +  v_{i}(t) + \frac{1}{2} at^{2}, where x_{f} = final position, x_{i} = initial position, v_{i} = initial velocity, t = time, and a = acceleration. 

Your initial position is where you initially were before you braked. That means x_{i} = 100m. You final position is where you ended up after t seconds passed, so x_{f} = 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was v_{i} = 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
350\:m = 100\:m + (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\
250\:m = (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\
250\:m = 498\:m +34.445\:s^{2}(a)\\
-248\:m = 34.445\:s^{2}(a)\\
a \approx -7.2 \: m/s^{2}

Your acceleration is approximately -7.2 \: m/s^{2}.
4 0
2 years ago
A gas is compressed from 600 cm3 to 200cm3 at a constant pressure of 400 kpa. at the same time, 100 j of heat energy is transfer
Mekhanik [1.2K]
The initial volume of the gas is
V_i = 600 cm^3
while its final volume is
V_f = 200 cm^3
so its variation of volume is
\Delta V = V_f - V-i = 200 cm^3 - 600 cm^3 = -400 cm^3 = -400 \cdot 10^{-6} m^3

The pressure is constant, and it is
p=400 kPa = 400 \cdot 10^3 Pa

Therefore the work done by the gas is
W=p\Delta V = (400 \cdot 10^3 Pa)(-400 \cdot 10^{-6} m^3)=-160 J
where the negative sign means the work is done by the surrounding on the gas.

The heat energy given to the gas is
Q=+100 J

And the change in internal energy of the gas can be found by using the first law of thermodynamics:
\Delta U = Q-W = 100 J - (-160 J)=+260 J
where the positive sign means the internal energy of the gas has increased.
7 0
2 years ago
"A block of metal weighs 40 N in air and 30 N in water. What is the buoyant force on the block due to the water? The density of
Alja [10]

Answer:

buoyant force on the block due to the water= 10 N

Explanation:

We know that

buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.

Given:

A block of metal weighs 40 N in air and 30 N in water.

F_B =  40-30= 10 N

therefore,  buoyant force on the block due to the water= 10 N

6 0
1 year ago
Read 2 more answers
Which of the following forces exists between objects even in the absence of direct physical contact
den301095 [7]

Answer: TRUST ME I GOT IT WRONG the answer is B

Explanation:

3 0
2 years ago
Read 2 more answers
Other questions:
  • Is a dimond a pure substance? yes or no
    7·2 answers
  • PLEASE ANSWER ACCURATELY DO NOT GUESS PLEASE AND THANK YOU
    10·1 answer
  • A 2.0 g metal cube and a 4.0 g metal cube are 6.0 cm apart, measured between their centers, on a horizontal surface. For both, t
    13·1 answer
  • You are comparing two diffraction gratings using two different lasers: a green laser and a red laser. You do these two experimen
    8·1 answer
  • A basketball player standing up with the hoop launches the ball straight up with an initial velocity of v_o = 3.75 m/s from 2.5
    5·1 answer
  • A coffee cup on the horizontal dashboard of a car slides forward when the driver decelerates from 45 kmh to rest in 3.5 s or les
    10·1 answer
  • Floor lamps usually have a base with large inertia, while the long body and top have much less inertia. Part A If you want to sh
    6·1 answer
  • "Suppose a horizontal laser beam is reflected off a plane mirror that is perfectly smooth and flat. At first, the mirror is angl
    14·1 answer
  • Wind blows at the speed of 30m/s across a 175m^2 flat roof if a house.
    14·1 answer
  • Part A
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!