Here in this case since there is no torque about the hinge axis for the system of bullet and block then we can say that angular momentum of this system will remain conserved


here we will have
L = 0.250 m
v = 385 m/s
m = 1.90 gram
now moment of inertia of the plate will be



now from above equation


Donna's doctor must have diagnosed her with muscle cramps. With the given symptoms above, it is likely that she is experiencing muscle cramps. Muscle cramps most likely happen when the individual experiencing it is lack of fluid intake, causing the muscles to tighten causing pain and for the muscle to contract involuntarily.
Answer:
A) 12.08 m/s
B) 19.39 m/s
Explanation:
A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:
mg(sinθ) – F_k = ma
Where; F_k is frictional force due to kinetic friction given by the formula;
F_k = (μ_k) × F_n
F_n is normal force given by mgcosθ
Thus;
F_k = μ_k(mg cosθ)
We now have;
mg(sinθ) – μ_k(mg cosθ) = ma
Dividing through by m to get;
g(sinθ) – μ_k(g cosθ) = a
a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)
a = -3.71 m/s²
We are told that distance d = 24.0 m and v_o = 18 m/s
Using newton's 3rd equation of motion, we have;
v = √(v_o² + 2ad)
v = √(18² + (2 × -3.71 × 24))
v = 12.08 m/s
B) Now, μ_k = 0.10
Thus;
a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)
a = 1.08 m/s²
Using newton's 3rd equation of motion, we have;
v = √(v_o + 2ad)
v = √(18² + (2 × 1.08 × 24))
v = 19.39 m/s
Initial speed, u = 15 m/s
Final speed, v = 10 m/s
Distance traveled, s = 6.0 m
The acceleration, a, is determined from
u² + 2as = v²
(15 m/s)² + 2*(a m/s²)*(6.0 m) = (10 m/s)²
225 + 12a = 100
12a = -125
a = -10.4167 m/s²
The time, t, for the velocity to change from 15 m/s to 10 m/s is given by
(10 m/s) = (15 m/s) - (10.4167 m/s²)*(t s)
10 = 15 - 10.4167t
t = 0.48 s
The average speed is
(6.0 m)/(0.48 s) = 12.5 m/s
Answer: 12.5 m/s
The photon can be absorbed and the energy of the photon is exactly equal to the energy-level difference between the ground state and the level d.