answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STALIN [3.7K]
2 years ago
10

The standard acceleration (at sea level and 45◦ latitude) due to gravity is 9.806 65 m/s2. What is the force needed to hold a ma

ss of 2 kg at rest in this gravitational field? How much mass can a force of 1 N support?
Physics
1 answer:
erma4kov [3.2K]2 years ago
5 0

a) Remember Newton's second Law:

F = m*a

This means that the forces that is being exerted over an object is equal to the mass of the object times the acceleration that it has.

In this case, in order to hold the mass you need a force with the same magnitude but opposite direction to the gravitational force. The magnitude of this force would be the mass of the object times the gravitactional  acceleration:

F = 2kg*9.80665m/s² = 19.6133 N

b) Using again Newton's second Law, we can issolate mass from that equation:

m = F/a

Then, the mass that a force of 1N can support is equal to:

m = 1N/9.80665m/s² = 0.102 kg

You might be interested in
The density of aluminum is 2.7 × 103 kg/m3 . the speed of longitudinal waves in an aluminum rod is measured to be 5.1 × 103 m/s.
andrey2020 [161]
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2. So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density. So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave. Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
5 0
2 years ago
A solid ball is released from rest and slides down a hillside that slopes downward at 65.0" from the horizontal
PilotLPTM [1.2K]
Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline 
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
3 0
2 years ago
The speed of sound in air changes with the temperature. When the temperature T is 32 degrees Fahrenheit, the speed S of sound is
dezoksy [38]

Answer and Explanation:

A. We have temperature t = 32

Speed of sound, s = 1087.5

As t increases by 1⁰f speed increases by 1.2

So that

S = 1088.6

T= 33⁰f

We have 2 equations

1087.5 = k(32) + c

1088.6 = k(33) + c

Subtracting both equations

(33-32)k = 1088.6-1087.5

K = 1.1

b.). S = kT + c

1087.5 = 32(1.1) + c

Such that

C = 1052.3

Therefore

S = 1.1(t) + 1052.3

C.). S = 1.1t + 1052.3

We make t subject of the formula

T = s/1.1 - 1052.3/1.1

T = 0.90(s) - 956.3

D. This means that We have temperature to rise by 0.90 whenever speed is increased

8 0
2 years ago
A plane flying at 70.0 m/s suddenly stalls. If the acceleration during the stall is 9.8 m/s2 directly downward, the stall lasts
tino4ka555 [31]

Answer:

v = 66.4 m/s

Explanation:

As we know that plane is moving initially at speed of

v = 70 m/s

now we have

v_x = 70 cos25

v_x = 63.44 m/s

v_y = 70 sin25

v_y = 29.6 m/s

now in Y direction we can use kinematics

v_y = v_i + at

v_y = 29.6 - (9.81 \times 5)

v_y = -19.5 m/s

since there is no acceleration in x direction so here in x direction velocity remains the same

so we will have

v = \sqrt{v_x^2 + v_y^2}

v = \sqrt{63.44^2 + 19.5^2}

v = 66.4 m/s

4 0
2 years ago
Two male moose charge at each other with the same speed and meet on a icy patch of tundra. As they collide, their antlers lock t
Ksenya-84 [330]
Change in velocity of larger moose: (1/3)v - v = -(2/3)v 
<span>change in velocity of small moose: (1/3)v - (-v) = (4/3)v </span>
<span>- (change in velocity of larger moose)/(change in velocity of smaller moose) = 2

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.



</span>
4 0
2 years ago
Read 2 more answers
Other questions:
  • Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
    15·1 answer
  • what velocity must a 1340kg car have in order to havw the same momentum as a 2680 kg truck traveling at a velocity of 15m/s to t
    12·1 answer
  • A point charge q1=−4.00nc is at the point x=0.600 meters, y=0.800 meters, and a second point charge q2=+6.00nc is at the point x
    11·2 answers
  • A 1.0-kg ball has a velocity of 12 m/s downward just before it strikes the ground and bounces up with a velocity of 12 m/s upwar
    6·1 answer
  • You are working on charge-storage devices for a research center. Your goal is to store as much charge on a given device as possi
    5·1 answer
  • A village maintains a large tank with an open top, containing water for emergencies. The water can drain from the tank through a
    7·1 answer
  • A non-uniform rod 60cm long and weighs 32N is balanced at the 45cm mark. A load of 2N is hung on the zinc rod at the 25cm mark.
    11·1 answer
  • 2) A man squeezes a pin between his thumb and finger, as shown in Fig. 6.1.
    14·1 answer
  • To overcome an object's inertia, it must be acted upon by __________. A. gravity B. energy C. force D. acceleration
    5·2 answers
  • A skydiver is using wind to land on a target that is 50 m away horizontally. The skydiver starts from a height of 70 m and is fa
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!