answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetlanka [38]
2 years ago
8

. A long 10-cm-diameter steam pipe whose external surface temperature is 110oC passes through some open area that is not protect

ed against the winds. Determine the rate of heat loss from the pipe per unit of its length when the air is at 1 atm pressure and 10oC and the wind is blowing across the pipe at a velocity of 8 m/s. Use the following relation to calculate the Nusselt number.
Physics
2 answers:
Nata [24]2 years ago
8 0

Answer:

Nu = 30.311

Explanation:

Let consider that pipe is a horizontal cylinder. The Nusselt number is equal to:

Nu = \left\{0.6+\frac{0.387\cdot Ra_{D}^{\frac{1}{6} }}{[1+\left(\frac{0.559}{Pr}  \right)^{\frac{9}{16}} ]^{\frac{8}{27} }}  \right\}^{2}, for Ra_{D} \le 10^{12}.

Where Ra_{D} is the Rayleigh number associated with the cylinder.

The Rayleigh number is:

Ra_{D} = \frac{g\cdot \beta\cdot (T_{pipe}-T_{air})\cdot D^{3}}{\nu^{2}}\cdot Pr

By assuming that air behaves ideally, the coefficient of volume expansion is:

\beta = \frac{1}{T}

\beta = \frac{1}{283.15\,K}

\beta = 3.532\times 10^{-3}\,\frac{1}{K}

The cinematic and dynamic viscosities, thermal conductivity and isobaric specific heat of air at 10 °C and 1 atm are:

\nu = 1.426\times 10^{-5}\,\frac{m^{2}}{s}

\mu = 1.778\times 10^{-5}\,\frac{kg}{m\cdot s}

k = 0.02439\,\frac{W}{m\cdot ^{\textdegree}C}

c_{p} = 1006\,\frac{J}{kg\cdot ^{\textdegree}C}

The Prandtl number is:

Pr = \frac{\mu\cdot c_{p}}{k}

Pr = \frac{(1.778\times 10^{-5}\,\frac{kg}{m\cdot s} )\cdot (1006\,\frac{J}{kg\cdot ^{\textdegree}C} )}{0.02439\,\frac{W}{m\cdot ^{\textdegree}C} }

Pr = 0.733

Likewise, the Rayleigh number is:

Ra_{D} = \frac{(9.807\,\frac{m}{s^{2}} )\cdot (3.532\times 10^{-3}\,\frac{1}{K} )\cdot (110^{\textdegree}C-10^{\textdegree}C)\cdot (0.1\,m)^{3}}{(1.426\times 10^{-5}\,\frac{m^{2}}{s})^{2} }\cdot (0.733)

Ra_{D} = 12.486\times 10^{6}

Finally, the Nusselt number is:

Nu = \left\{0.6+\frac{0.387\cdot (12.486\times 10^{6})^{\frac{1}{6} }}{\left[1 + \left(\frac{0.559}{0.733}\right)^{\frac{9}{16} }\right]^{\frac{8}{27} }}  \right\}^{2}

Nu = 30.311

vlada-n [284]2 years ago
5 0

Answer:

The Nusselt number = 124

Explanation:

Our assumption is that air is an ideal gas and that the radiation effect is negligible

Surface temperature, T_{s} = 110^{0} C

T_{\infty} = 10^{0} C

Velocity, v = 8 m/s

The film temperature can be calculated as, T_{f} = \frac{T_{s} + T_{\infty} }{2}

T_{f} = \frac{110 +10 }{2} \\T_{f} = 60^{0} C

At the film temperature, T_{f} = 60^{0} C and  1 atm pressure, air has the following properties:

K = 0.02808 W/m-k

P_{r} = 0.7202

Reynold number, Re = \frac{vD}{V}

D = 10 cm = 0.1 m

V = 1.896 * 10⁻⁵ m²/s

Re = \frac{0.1 * 8}{1.896 * 10^{-5} }

Re = 4.2194 * 10⁴

The Nusselt number will be calculated using the relation:

Nu = 0.3 + \frac{0.62 Re^{1/2} Pr^{1/3} }{[1 +( 0.41 Pr)^{2/3}] ^{1/4} } + [1 + (\frac{Re}{282000} )^{5/8} ]^{4/5}

Substituting Re = 4.2194 * 10⁴ and P_{r} = 0.7202 into the equation above

the Nusselt number, Nu = 124

You might be interested in
The density of aluminum is 2.7 × 103 kg/m3 . the speed of longitudinal waves in an aluminum rod is measured to be 5.1 × 103 m/s.
andrey2020 [161]
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2. So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density. So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave. Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
5 0
2 years ago
An object is moving in the plane according to these parametric equations:
aniked [119]
A. The horizontal velocity is 
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π

b. vy = 4π cos (4πt + π/2)
vy = 0

c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]

d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]

e. t = -1.0

f. t = -0.35

g. Solve for t 
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax

h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax

i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)

h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt

k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
5 0
2 years ago
Read 2 more answers
A rectangular beam 10 cm wide, is subjected to a maximum shear force of 50000 N, the corresponding maximum shear stress being 3
nika2105 [10]

Answer:

Option B is the correct answer.

Explanation:

Shear stress is the ratio of shear force to area.

We have

       Shear stress = 3 N/mm² = 3 x 10⁶ N/m²

       Area = Area of rectangle = 10 x 10⁻² x d = 0.1d

       Shear force = 50000 N

Substituting

        \texttt{Shear stress}=\frac{\texttt{Shear force}}{\texttt{Area}}\\\\3\times 10^6=\frac{50000}{0.1d}\\\\d=0.1667m=16.67cm

Width of beam = 16.67 cm

Option B is the correct answer.

6 0
2 years ago
The drag force F on a boat varies jointly with the wet surface area A of the boat and the square of the speed s of the boat. A b
Advocard [28]

Answer:

Wet surfaces areaA=+25.3ft^2

Explanation:

Using F= K×A× S^2

Where F= drag force

A= surface area

S= speed

Given : F=996N S=20mph A= 83ft^2

K = F/AS^2=996/(83×20^2)

K= 996/33200 = 0.03

1215= (0.03)× A × 18^2

1215=9.7A

A=1215/9.7=125.3ft^2

7 0
2 years ago
3. A snail crawls 5 inches in 15 minutes. What is its speed in in./min?
suter [353]

Answer:

3.0.33in/min...(c)

4.40m/min....(b)

5.10m/s....(a)

6.20mph...(b)

7.4m/s...(a)

3 0
2 years ago
Other questions:
  • Rachel has an unknown sample of a radioisotope listed in the table. Using a special technique, she is able to measure the mass o
    8·2 answers
  • How did Newton use creativity and logic in his approach to investigating light?
    15·2 answers
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • postal worker on a bicycle travels at an average speed of 4m/s for 3 minutes. Work out how far she travelled.
    7·2 answers
  • A 0.111 kg hockey puck moving at 55 m/s is caught by a 80. kg goalie at rest. with what speed does the goalie slide on the frict
    5·1 answer
  • The Sun is the primary source of energy for ecosystems. The Sun emits . When an organism obtains nutrients by feeding on other o
    7·2 answers
  • Assume that you stay on the Earth's surface. What is the ratio of the sun's gravitational force on you to the earth's gravitatio
    9·1 answer
  • Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hourmiles/hour
    8·1 answer
  • Cylinder A is moving downward with a velocity of 3 m/s when the brake is suddenly applied to the drum. Knowing that the cylinder
    14·1 answer
  • The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!