Since speed (v) is in ft/sec, let's convert our diameters from inches to feet:
1) 5/8in = 0.625in
0.625in × 1ft/12in = 0.0521ft
2) 0.25in × 1ft/12in = 0.021ft
Equation:






new velocity coming out of the hose then is
44 ft/sec
Answer:128 N
Explanation:
Sample of 3 cm and 4 mm diameter found to break under a minimum force of 128 N .
If sample is 1.5 cm long with same cross-sectional area then minimum force required to break is also 128 N because the applied force is same for any length and diameter of tendon.
The frequency of the radio wave is:

The wavelength of an electromagnetic wave is related to its frequency by the relationship

where c is the speed of light and f the frequency. Plugging numbers into the equation, we find

and this is the wavelength of the radio waves in the problem.
We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>