The one that is loaded worst. The overall weight is not important; tongue weight is a matter of loading. Our 12,000 lb snow cat trailer, which has stops to position the cat properly, has under 100 lbs tongue weight. Excessive tongue weight is a Bad Thing because it reduces weight on the towing vehicle's front wheels, leading to instability.
<u>Answer:</u>
Velocity of the dog relative to the road = 26.04 m/s 3.15⁰ north of east.
<u>Explanation:</u>
Let the east point towards positive X-axis and north point towards positive Y-axis.
Speed of truck = 25 m/s north = 25 j m/s
Speed of dog = 1.75 m/s at an angle of 35.0° east of north = (1.75 cos 35 i + 1.75 sin 35 j)m/s
= (1.43 i + 1.00 j) m/s
Velocity of the dog relative to the road = 25 j + 1.43 i + 1.00 j = 1.43 i + 26.00 j
Magnitude of velocity = 26.04 m/s
Angle from positive horizontal axis = 86.85⁰
So Velocity of the dog relative to the road = 26.04 m/s 86.85⁰ east of north = 26.04 m/s 3.15⁰ north of east.
Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.
Answer:
the tension in the rope between the boxes is equal to 88 N
Explanation:
given,
the force applied on one body F = 176 N
When two bodies are moving on horizontal plane at constant velocity then their kinetic friction (f k) is equal to applied force F
According to newton third law the resultant force acting on one body is equal to the resultant force acting on the another body.
T is the tension in the rope

T - F = - (T - F)
T - 176 = - (T - 0)
2 T = 176
T = 176/2 = 88 N
so, the tension in the rope between the boxes is equal to 88 N
<span>The chemical formula for the unknown gas is Ne.
Since we're looking for the rate at which a gas escapes through a small hole, we're dealing with effusion. For effusion, the rate is proportional to the velocity of the gas particles.
Kinetic energy
E = 0.5 mv^2
Since the kinetic energy of individual gas particles is the same if their temperatures are the same, we can create the following equality:
0.5 m1(v1)^2 = 0.5 m2(v2)^2
Double each side to make it simplier.
m1(v1)^2 = m2(v2)^2
Divide both sides by m1 and by (v2)^2, giving
(v1)^2/(v2^2) = m2/m1
And take the square root, giving
(v1)/(v2) = sqrt(m2/m1)
Now let's use the value 1 and the atomic weight of Kr for v1 and m1
1/(v2) = sqrt(m2/83.798)
And for v2, we'll use the value 2.04
1/2.04 = sqrt(m2/83.798)
Now solve for m2.
1/2.04 = sqrt(m2/83.798)
1/4.1616 = m2/83.798
83.798/4.1616 = m2
20.13600538 = m2
So the atomic weight of the unknown gas should be close to 20.136. Looking at a periodic table, I find that neon has an atomic weight of 20.18 which is quite close. Additionally, since neon is a noble gas, its gas particles consist of individual atoms. So the unknown gas is neon.</span>