To solve this problem we will use the concepts related to angular motion equations. Therefore we will have that the angular acceleration will be equivalent to the change in the angular velocity per unit of time.
Later we will use the relationship between linear velocity, radius and angular velocity to find said angular velocity and use it in the mathematical expression of angular acceleration.
The average angular acceleration

Here
= Angular acceleration
Initial and final angular velocity
There is not initial angular velocity,then

We know that the relation between the tangential velocity with the angular velocity is given by,

Here,
r = Radius
= Angular velocity,
Rearranging to find the angular velocity

Remember that the radius is half te diameter.
Now replacing this expression at the first equation we have,


Therefore teh average angular acceleration of each wheel is 
Answer:

Explanation:
It is given that,
Mass of the puck, m = 4.8 kg
Initial velocity of the puck, 
After 8 seconds, final velocity of the puck, 
Let the x and y component of force is given by
.
x component of force is given by :


y component of force is given by :


So, the component of the force is
. Hence, this is the required solution.
Mass is the amount of matter present in an object, it also determines the strength of the mutual gravitational force of an object to another object. Volume is the amount of space that the object occupies. Meanwhile, density is the amount of mass per volume of an object, with that formula, we can say that density is directly proportional to the mass but indirectly proportional to the volume.
The temperature will remain constant, at around 100 C, and the volume of water in the pot will decrease, as it turns into steam and floats away from the pot.
Answer:
a) 2.5 m/s. (In the opposite direction to the direction in which she threw the boot).
b) The centre of mass is still at the starting point for both bodies.
c) It'll take Sally 12 s to reach the shore which is 30 m from her starting point.
Explanation:
Linear momentum is conserved.
(mass of boot) × (velocity of boot) + (mass of sally) × (velocity of Sally) = 0
5×30 + 60 × v = 0
v = (-150/60) = -2.5 m/s. (Minus inicates that motion is in the opposite direction to the direction in which she threw the boot).
b) At time t = 10 s,
Sally has travelled 25 m and the boot has travelled 300 m.
Taking the starting point for both bodies as the origin, and Sally's direction as the positive direction.
Centre of mass = [(60)(25) + (5)(-300)]/(60+5)
= 0 m.
The centre of mass is still at the starting point for both bodies.
c) The shore is 30 m away.
Speed = (Distance)/(time)
Time = (Distance)/(speed) = (30/2.5)
Time = 12 s
Hope this Helps!!!