answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tamiku [17]
2 years ago
13

In which atmosphere layer does 80 percent of the gas in the atmosphere reside?

Physics
2 answers:
VladimirAG [237]2 years ago
7 0

Answer: TheTroposphere contains 80% of the total gas in the atmosphere

tatiyna2 years ago
5 0

Answer:

The correct answer is Troposphere.

Explanation:

The troposphere is the closest atmospheric layer of the earth's surface and 80% of the total mass of the atmosphere and 99% of the water vapor are located here.

In this layer, the higher the altitude, the temperature and the steam will be lower. This steam is responsible for regulating air temperatures thanks to the absorption of energy from the sun. <u>Here is the air we breathe and all the climatic processes of our planet. </u>

80% of the mass of the atmosphere is located in this layer because in it the air is much denser than in the other layers.

You might be interested in
Argon in the amount of 1.5 kg fills a 0.04-m3 piston cylinder device at 550 kPa. The piston is now moved by changing the weights
Arlecino [84]

Answer:

               275 kPa

Explanation:

             mass of the gas=m=1.5 kg

             initial volume if the gas=V₁=0.04 m³

             initial pressure of the gas= P₁=550 kPa

as the condition is given final volume is double the initial volume

             V₂=final volume

             V₂=2 V₁

As the temperature is constant

             T₁=T₂=T

\frac{P1V1}{T1}=\frac{P2 V2}{T2}

putting the values in the equation.

\frac{P1V1}{T1}=\frac{P2 *2V1}{T2}

P₂=\frac{P1}{2}

P₂=\frac{550}{2}

P₂=275 kPa

So the final pressure of the gas is 275 kPa.

           

3 0
2 years ago
A merry-go-round with a a radius of R = 1.63 m and moment of inertia I = 196 kg-m2 is spinning with an initial angular speed of
kondor19780726 [428]

Answer:

1) L = 299.88 kg-m²/s

2) L = 613.2 kg-m²/s

3) L = 499.758 kg-m²/s

4) ω₁ = 0.769 rad/s

5) Fc = 70.3686 N

6) v = 1.2535 m/s

7) ω₀ = 1.53 rad/s

Explanation:

Given

R = 1.63 m

I₀ = 196 kg-m²

ω₀ = 1.53 rad/s

m = 73 kg

v = 4.2 m/s

1) What is the magnitude of the initial angular momentum of the merry-go-round?

We use the equation

L = I₀*ω₀ = 196 kg-m²*1.53 rad/s = 299.88 kg-m²/s

2) What is the magnitude of the angular momentum of the person 2 meters before she jumps on the merry-go-round?

We use the equation

L = m*v*Rp = 73 kg*4.2 m/s*2.00 m = 613.2 kg-m²/s

3) What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

We use the equation

L = m*v*R = 73 kg*4.2 m/s*1.63 m = 499.758 kg-m²/s

4) What is the angular speed of the merry-go-round after the person jumps on?

We can apply The Principle of Conservation of Angular Momentum

L in = L fin

⇒ I₀*ω₀ = I₁*ω₁

where

I₁ = I₀ + m*R²

⇒  I₀*ω₀ = (I₀ + m*R²)*ω₁

Now, we can get ω₁

⇒  ω₁ = I₀*ω₀ / (I₀ + m*R²)

⇒  ω₁ = 196 kg-m²*1.53 rad/s / (196 kg-m² + 73 kg*(1.63 m)²)

⇒  ω₁ = 0.769 rad/s

5) Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

We have to get the centripetal force as follows

Fc = m*ω²*R  

⇒  Fc = 73 kg*(0.769 rad/s)²*1.63 m = 70.3686 N

6) Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

we can use the equation

v = ω₁*R = 0.769 rad/s*1.63 m = 1.2535 m/s

7) What is the angular speed of the merry-go-round after the person lets go?

ω₀ = 1.53 rad/s

It comes back to its initial angular speed

8 0
2 years ago
A person kicks a ball, giving it an initial velocity of 20.0 m/s up a wooden ramp. When the ball reaches the top, it becomes air
Alex Ar [27]

Answer:

(a) Height is 4.47 m

(b) Height is 4.37 m

Solution:

As per the question:

Initial velocity of teh ball, v_{o} = 20.0 m/s

Angle made by the ramp, \theta = 22.0^{\circ}

Distance traveled by the ball on the ramp, d = 5.00 m

Now,

(a) At any point on the projectile before attaining maximum height, the velocity can be given by the eqn-3 of motion:

v^{2} = v_{o}^{2} - 2gH

where

H = dsin22^{\circ} = 5sin22^{\circ}

g = 9.8 m/s^{2}

v^{2} = 20^{2} - 2\times 9.8\times 5sin22^{\circ}

v = \sqrt{400 - 19.6\times 5sin22^{\circ}} = 19.06 m/s

Now, maximum height attained is given by:

h = \frac{(vsin\theta)^{2}}{2g}

h = \frac{(19sin(22^{\circ}))^{2}}{2\times 9.8} = 2.60 m

Height from the ground = 5sin22^{circ} + 2.86 = 1.87 + 2.60 = 4.47m

(b) now, considering the coefficient of friction bhetween ramp and the ball, \mu = 0.150:

velocity can be given by the eqn-3 of motion:

v^{2} = v_{o}^{2} - 2gH - \mu gd

v^{2} = 20^{2} - 2\times 9.8\times 5sin22^{\circ} - 0.150\times 9.8\times 5

v = \sqrt{400 - 19.6\times 5sin22^{\circ} - 0.150\times 9.8\times 5} = 18.7 m/s

Now, maximum height attained is given by:

h = \frac{(vsin\theta)^{2}}{2g}

h = \frac{(18.7sin(22^{\circ}))^{2}}{2\times 9.8} = 2.50 m

Height from the ground = 5sin22^{circ} + 2.86 = 1.87 + 2.50 = 4.37 m

6 0
1 year ago
What force would be needed to accelerate a 0.040-kg golf ball at 20.0 m/s?
Naily [24]

Answer:

any amount of force will do it as time is not mentioned here

5 0
2 years ago
Little Tammy lines up to tackle Jackson to (unsuccessfully) prove the law of conservation of momentum. Tammy’s mass is 34.0 kg a
Naily [24]

Answer:

So Tammy must move with speed 4.76 m/s in opposite direction of Jackson

Explanation:

As per law of conservation of momentum we know that there is no external force on it

So here we can say that initial momentum of the system must be equal to the final momentum of the system

now we have

m_1v_1 + m_2v_2 = 0

final they both comes to rest so here we can say that final momentum must be zero

now we have

34 v + 54 (3 m/s) = 0

v = -4.76 m/s

8 0
1 year ago
Other questions:
  • The inner and outer surfaces of a 5m x 6m brick wall of thickness 30 cm and thermal conductivity 0.69 w/m.0 c are maintained at
    7·1 answer
  • If a magnet is broken into two pieces, what happens to the magnetic poles? One piece will have a north pole, while the other pie
    15·2 answers
  • Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
    9·1 answer
  • Which one of the following devices converts radioactive emissions to light for detection?
    8·1 answer
  • At 213.1 K a substance has a vapor pressure of 45.77 mmHg. At 243.7 K it has a vapor pressure of 193.1 mm Hg. Calculate its heat
    11·1 answer
  • A paper clip is made of wire 0.5 mm in diameter. If the original material from which the wire is made is a rod 25 mm in diameter
    9·1 answer
  • Workers do 8000 J of work on a 2000-N crate to push it up a ramp. If the ramp is 2 m high, what is the efficiency of the ramp?
    9·2 answers
  • Find the average force exerted by the bat on the ball if the two are in contact for 0.00129 s. Answer in units of N.
    10·1 answer
  • If a steady-state heat transfer rate of 3 kW is conducted through a section of insulating material 1.0 m2 in cross section and 2
    15·1 answer
  • A teacher performing demonstration finds that a piece of cork displaces 23.5 ml of water. The piece of cork has a mass 5.7 g. Wh
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!