answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
2 years ago
5

A merry-go-round with a a radius of R = 1.63 m and moment of inertia I = 196 kg-m2 is spinning with an initial angular speed of

ω = 1.53 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 73 kg and velocity v = 4.2 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round.
1)

What is the magnitude of the initial angular momentum of the merry-go-round?

kg-m2/s

Your submissions:

2)

What is the magnitude of the angular momentum of the person 2 meters before she jumps on the merry-go-round?

kg-m2/s

Your submissions:

3)

What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

kg-m2/s

Your submissions:

4)

What is the angular speed of the merry-go-round after the person jumps on?

rad/s

Your submissions:

5)

Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

N

Your submissions:

6)

merrygoround2

Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

m/s

Your submissions:

7)

What is the angular speed of the merry-go-round after the person lets go?

rad/s
Physics
1 answer:
kondor19780726 [428]2 years ago
8 0

Answer:

1) L = 299.88 kg-m²/s

2) L = 613.2 kg-m²/s

3) L = 499.758 kg-m²/s

4) ω₁ = 0.769 rad/s

5) Fc = 70.3686 N

6) v = 1.2535 m/s

7) ω₀ = 1.53 rad/s

Explanation:

Given

R = 1.63 m

I₀ = 196 kg-m²

ω₀ = 1.53 rad/s

m = 73 kg

v = 4.2 m/s

1) What is the magnitude of the initial angular momentum of the merry-go-round?

We use the equation

L = I₀*ω₀ = 196 kg-m²*1.53 rad/s = 299.88 kg-m²/s

2) What is the magnitude of the angular momentum of the person 2 meters before she jumps on the merry-go-round?

We use the equation

L = m*v*Rp = 73 kg*4.2 m/s*2.00 m = 613.2 kg-m²/s

3) What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

We use the equation

L = m*v*R = 73 kg*4.2 m/s*1.63 m = 499.758 kg-m²/s

4) What is the angular speed of the merry-go-round after the person jumps on?

We can apply The Principle of Conservation of Angular Momentum

L in = L fin

⇒ I₀*ω₀ = I₁*ω₁

where

I₁ = I₀ + m*R²

⇒  I₀*ω₀ = (I₀ + m*R²)*ω₁

Now, we can get ω₁

⇒  ω₁ = I₀*ω₀ / (I₀ + m*R²)

⇒  ω₁ = 196 kg-m²*1.53 rad/s / (196 kg-m² + 73 kg*(1.63 m)²)

⇒  ω₁ = 0.769 rad/s

5) Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

We have to get the centripetal force as follows

Fc = m*ω²*R  

⇒  Fc = 73 kg*(0.769 rad/s)²*1.63 m = 70.3686 N

6) Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

we can use the equation

v = ω₁*R = 0.769 rad/s*1.63 m = 1.2535 m/s

7) What is the angular speed of the merry-go-round after the person lets go?

ω₀ = 1.53 rad/s

It comes back to its initial angular speed

You might be interested in
A laser emits two wavelengths (λ1 = 420 nm; λ2 = 630 nm). When these two wavelengths strike a grating with 450 lines/mm, they pr
Harlamova29_29 [7]

Answer:

a) m = 3 for λ1 and m= 2 for λ2 will overlap since they have the same values

b) At what angle does this overlap occur = 34.54 degree

Explanation:

The detailed steps and appropriate formula is as shown in the attachment.

8 0
2 years ago
You are driving on a road where rain has left large pools of water, and you have driven through water that was several inches de
makvit [3.9K]
In would say that you may have water in your brakes which may have gotten in the brake lines or in the brake discs so that could cause the brakes to malfunction due to driving through the pools of water so the brakes should be examined as soon as possible.
3 0
2 years ago
Read 2 more answers
Think of something from everyday life that follows a two-dimensional path. It could be a kicked football, a bus that's turning a
OLEGan [10]

Answer:

Let us consider the case of a bus turning around a corner with a constant velocity, as the bus approaches the corner, the velocity at say point A is Va, and is tangential to the curve with direction pointing away from the curve. Also, the velocity at another point say point B is Vb and is also tangential to the curve with direction pointing away from the curve.<em> </em><em>Although the velocity at point A and the velocity at point B have the same magnitude, their directions are different (velocity is a vector quantity), and hence we have a change in velocity. By definition, an acceleration occurs when we have a change in velocity, so the bus experiences an acceleration at the corner whose direction is away from the center of the corner</em>.

The acceleration is not aligned with the direction of travel because<em> the change in velocity is at a tangent (directed away) to the direction of travel of the bus.</em>

4 0
2 years ago
The weight of Earth's atmosphere exerts an average pressure of 1.01 ✕ 105 Pa on the ground at sea level. Use the definition of p
zloy xaker [14]

Answer:

The weight of Earth's atmosphere exert is 516.6\times10^{17}\ N

Explanation:

Given that,

Average pressure P=1.01\times10^{5}\ Pa

Radius of earth R_{E}=6.38\times10^{6}\ m

Pressure :

Pressure is equal to the force upon area.

We need to calculate the weight of earth's atmosphere

Using formula of pressure

P=\dfrac{F}{A}  

F=PA

F=P\times 4\pi\times R_{E}^2

Where, P = pressure

A = area

Put the value into the formula

F=1.01\times10^{5}\times4\times\pi\times(6.38\times10^{6})^2

F=516.6\times10^{17}\ N

Hence, The weight of Earth's atmosphere exert is 516.6\times10^{17}\ N

8 0
2 years ago
Read 2 more answers
A box slides down a frictionless plane inclined at an angle θ ¸ above the horizontal. The gravitational force on the box is dire
DedPeter [7]
<h2>Answer: at an angle \theta below the inclined plane. </h2>

If we draw the <u>Free Body Diagram</u> for this situation (figure attached), taking into account only the gravity force in this case, we will see the weight W of the block, which is directly proportional to the gravity acceleration g:  

W=m.g

This force is directed vertically at an angle \theta below the inclined plane, this means it has an X-component and a Y-component:

W=W_{X}+W_{Y}

W_{X}=m.g.cos(\theta)

W_{Y}=m.g.sin(\theta)

Therefore the correct option is c

6 0
2 years ago
Read 2 more answers
Other questions:
  • Give the symbols for 4 species that are isoelectronic with the telluride ion, te2-.
    12·1 answer
  • Titanium metal requires a photon with a minimum energy of 6.94×10−19J to emit electrons. If titanium is irradiated with light of
    10·1 answer
  • Two loudspeakers in a plane, 5.0m apart, are playing the same frequency. If you stand 14.0m in front of the plane of the speaker
    14·1 answer
  • The end of a stopped pipe is to be cut off so that the pipe will be open. If the stopped pipe has a total length L, what fractio
    7·1 answer
  • To eight significant figures, Avogadro's constant is 6.0221367×10^(23)mol−1. Which of the following choices demonstrates correct
    11·1 answer
  • Carry's car has a mass of 1000 kg and its brakes can apply 8000 N of force. If she is driving at 24 m/s and sees something in th
    5·1 answer
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.Ex
    5·1 answer
  • 1. A city bus travels 6 blocks east and 8 blocks north. Each block is 100 m long. If the bus travels this distance in 15mins, wh
    13·1 answer
  • Rita has two small containers, one holding a liquid and one holding a gas. Rita transfers the substances to two larger container
    11·2 answers
  • Two very small +3.00-μC charges are at the ends of a meter stick. Find the electric potential (relative to infinity) at the cent
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!