answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
1 year ago
5

A merry-go-round with a a radius of R = 1.63 m and moment of inertia I = 196 kg-m2 is spinning with an initial angular speed of

ω = 1.53 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 73 kg and velocity v = 4.2 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round.
1)

What is the magnitude of the initial angular momentum of the merry-go-round?

kg-m2/s

Your submissions:

2)

What is the magnitude of the angular momentum of the person 2 meters before she jumps on the merry-go-round?

kg-m2/s

Your submissions:

3)

What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

kg-m2/s

Your submissions:

4)

What is the angular speed of the merry-go-round after the person jumps on?

rad/s

Your submissions:

5)

Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

N

Your submissions:

6)

merrygoround2

Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

m/s

Your submissions:

7)

What is the angular speed of the merry-go-round after the person lets go?

rad/s
Physics
1 answer:
kondor19780726 [428]1 year ago
8 0

Answer:

1) L = 299.88 kg-m²/s

2) L = 613.2 kg-m²/s

3) L = 499.758 kg-m²/s

4) ω₁ = 0.769 rad/s

5) Fc = 70.3686 N

6) v = 1.2535 m/s

7) ω₀ = 1.53 rad/s

Explanation:

Given

R = 1.63 m

I₀ = 196 kg-m²

ω₀ = 1.53 rad/s

m = 73 kg

v = 4.2 m/s

1) What is the magnitude of the initial angular momentum of the merry-go-round?

We use the equation

L = I₀*ω₀ = 196 kg-m²*1.53 rad/s = 299.88 kg-m²/s

2) What is the magnitude of the angular momentum of the person 2 meters before she jumps on the merry-go-round?

We use the equation

L = m*v*Rp = 73 kg*4.2 m/s*2.00 m = 613.2 kg-m²/s

3) What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

We use the equation

L = m*v*R = 73 kg*4.2 m/s*1.63 m = 499.758 kg-m²/s

4) What is the angular speed of the merry-go-round after the person jumps on?

We can apply The Principle of Conservation of Angular Momentum

L in = L fin

⇒ I₀*ω₀ = I₁*ω₁

where

I₁ = I₀ + m*R²

⇒  I₀*ω₀ = (I₀ + m*R²)*ω₁

Now, we can get ω₁

⇒  ω₁ = I₀*ω₀ / (I₀ + m*R²)

⇒  ω₁ = 196 kg-m²*1.53 rad/s / (196 kg-m² + 73 kg*(1.63 m)²)

⇒  ω₁ = 0.769 rad/s

5) Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

We have to get the centripetal force as follows

Fc = m*ω²*R  

⇒  Fc = 73 kg*(0.769 rad/s)²*1.63 m = 70.3686 N

6) Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

we can use the equation

v = ω₁*R = 0.769 rad/s*1.63 m = 1.2535 m/s

7) What is the angular speed of the merry-go-round after the person lets go?

ω₀ = 1.53 rad/s

It comes back to its initial angular speed

You might be interested in
An object initially at rest experiences a constant horizontal acceleration due to the action of a resultant force applied for 10
Marianna [84]

Answer:

a = 18.28 ft/s²

Explanation:

given,

time of force application, t= 10 s

Work = 10 Btu

mass of the object = 15 lb

acceleration, a =  ? ft/s²

1 btu = 778.15 ft.lbf

10 btu = 7781.5 ft.lbf

m = \dfrac{15}{32.174}\ slug

m = 0.466 slug

now,

work done  is equal to change in kinetic energy

W = \dfrac{1}{2} m (v_f^2-v_i^2)

7781.5 = \dfrac{1}{2}\times 0.466\times v_f^2

 v_f = 182.75\ ft/s

now, acceleration of object

  a = \dfrac{v_f-v_o}{t}

  a = \dfrac{182.75-0}{10}

         a = 18.28 ft/s²

constant acceleration of the object is equal to 18.28 ft/s²

3 0
1 year ago
calculate the final centigrade temperature required to change 20 litres of gas at 120 degree Celsius and 1 atmosphere to 25 litr
AlladinOne [14]

Explanation:

pv=nRT

1×20=(273+120)×0.0082×N

2×25=(273+T)×0.082×N

(273+T)=1965/2

T=609.5

6 0
1 year ago
How much does a person weigh if it takes 700 kg*m/s to move them 10 m/s<br><br> NEED ASAP
madreJ [45]

Answer:

\huge\boxed{m = 70 \ kg}

Explanation:

<u>Given Data:</u>

Momentum = P = 700 kg m/s

Velocity = v = 10 m/s

<u>Required:</u>

Mass = m = ?

<u>Formula:</u>

P = mv

<u>Solution:</u>

m = P / v

m = 700 / 10

m = 70 kg

\rule[225]{225}{2}

Hope this helped!

<h3>~AnonymousHelper1807</h3>
5 0
1 year ago
A piano wire has a length of 81 cm and a mass of 2.0
choli [55]
<span>Frequency = 394 Hz
 Length of the string L = 81 cm = 0.81 m
 Mass of the string = 0.002 kg
 Tension T = ?
 Wave length of the string is two times the length.
  n x lambda = 2L, we also have lambda = vt = v / f, t is time period and given n = 1.
  Therefore L = v / 2f => v = 2fL
 Deriving form force equation, force here is tension T so
  v = squareroot of (TL/m) hence
   2fL = squareroot of (TL/m) => 4 x f^2 x L^2 = (T x L) / m => T = 4 x f^2 x L x m
 T = 4 x 0.81 x (394)^2 x 0.002 = 4 x 0.81 x 155236 x 0.002
 T = 1005.9 N = 1.006 x 10^3 N</span>
4 0
2 years ago
A tightly sealed glass jar is an example of which type of system?
noname [10]

D. hope it helps. :D

4 0
2 years ago
Read 2 more answers
Other questions:
  • Ashley made a paper boat and attached paperclips to the edges. In order to control her boat she used a horseshoe magnet. How is
    6·2 answers
  • Another term for electromotive force is _____.<br><br> voltage<br> current<br> resistance<br> power
    7·1 answer
  • Two girls,(masses m1 and m2) are on roller skates and stand at rest, close to each other and face-to-face. Girl 1 pushes squarel
    10·1 answer
  • Points A, B, and C are at the corners of an equilateral triangle of side 8 m. Equal positive charges of 4 mu or micro CC are at
    11·1 answer
  • 4. A ball of clay, of mass m, traveling at speed vo, collides and sticks to a stationary stick. The ball approaches the stick in
    13·2 answers
  • In this problem, you will calculate the location of the center of mass for the Earth-Moon system, and then you will calculate th
    14·1 answer
  • Which of the following statements about stages of nuclear burning (i.e., first-stage hydrogen burning, second-stage helium burni
    6·1 answer
  • Calculate the range of wavelengths (in m) for AM radio given its frequency range is 540 to 1,600 kHz. smaller value m larger val
    11·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
  • A rock is thrown down from the top of a cliff with a velocity of 3.61 m/s (down). The cliff is 28.4 m above the ground. Determin
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!