answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
1 year ago
14

In this problem, you will calculate the location of the center of mass for the Earth-Moon system, and then you will calculate th

e center of mass of the Earth-Moon-Sun system. The mass of the Moon is 7.35×1022 kg , the mass of the Earth is 6.00×1024 kg , and the mass of the sun is 2.00×1030 kg . The distance between the Moon and the Earth is 3.80×105 km . The distance between the Earth and the Sun is 1.50×108 km
A.) Where is the center of mass of the Earth-Moon system? The radius of the Earth is 6378 km and the radius of the Moon is 1737 km. Select one of the answers below:

a. The center of mass is exactly in the center between the Earth and the Moon.
b. The center of mass is nearer to the Moon than the Earth, but outside the radius of the Moon.
c. The center of mass is nearer to the Earth than the Moon, but outside the radius of the Earth.
d. The center of mass is inside the Earth.
e. The center of mass is inside the Moon.
f.) Calculate the location of the center of mass of the Earth-Moon-Sun system during a full Moon. A full Moon occurs when the Earth, Moon, and Sun are lined up as shown in the figure. (Figure 2) Use a coordinate system in which the center of the sun is at x=0 and the Earth and Moon both lie along the positive x direction.
Physics
1 answer:
Radda [10]1 year ago
8 0

Answer:

a) Option D is correct.

The center of mass between the Eartg and the moon is inside the Earth.

Explanation:

Given,

Mass of the moon = (7.35×10²²) kg

Mass of the Earth = (6.00×10²⁴) kg

Mass of the Sun = (2.00×10³⁰) kg

Distance between the Earth and the moon = (3.80×10⁵) km

Distance between the Earth and the Sun = (1.50×10⁸) km

With the assumption that all.of the bodies being considered are on the same straight line on the x-axis,

Note that Centre of mass is given as

C.M = (Σmx)/(Σm)

For the Earth-moon system, let the earth be x=0, then the moon is at x = (3.80 × 10 5) km away.

C.M = (Σmx)/(Σm)

Σmx = (6.00×10²⁴)) × (0) + (7.35×10²²) × (3.80×10⁵) = (2.793 × 10²⁸) kg.km

Σm = (6.00×10²⁴) + (7.35×10²²) = (6.0735 × 10²⁴) kg

CM = (2.793 × 10²⁸) ÷ (6.0735 × 10²⁴)

CM = (4.60 × 10³) km = 4600 km

This means the centre of mass is 4600 km from the Earth.

The Earth's radius = 6378 km

Hence, the centre if mass is inside the Earth.

Hope this Helps!!!

You might be interested in
Metals are used in many products because of the characteristic properties that most metals have. Which product requires the high
labwork [276]
<span>The answer is mirrors. Mirrors are made by applying a metal thin layer on the back surface of a transparent substrat, typically glass. The metal layer in the antiquity was bronze, mercury and later silver whose luster gave the reflective property to the mirror.</span>
3 0
1 year ago
Read 2 more answers
What is the mass and density of 237 mL of water
oee [108]

Answer:

<h2><em>V(water)= 237 mL=237×10^-6 m^3</em></h2><h2><em>ρ(water)=1000 kg/m^3</em></h2><h2><em>m=</em><em>ρ×V=(1000)×(237×10^-6)</em></h2><h2><em>m= 237×10^-3 = 0.237 kg</em></h2><h2><em>m= 237 gram.</em></h2>
8 0
2 years ago
A truck covered 2/7 of a journey at an average speed of 40
slavikrds [6]

Answer:8h

Explanation:

8 0
1 year ago
Read 2 more answers
What are the magnitude and direction of the force the pitcher exerts on the ball? (enter your magnitude to at least one decimal
murzikaleks [220]
Details are missing in the question. Complete text of the problem:

"The gravitational force exerted on a baseball is 2.28 N down. A pitcher throws the ball horizontally with velocity 16.5 m/s by uniformly accelerating it along a straight horizontal line for a time interval of 181 ms. The ball starts from rest.

(a) Through what distance does it move before its release? (m)
(b) What are the magnitude and direction of the force the pitcher exerts on the ball? (Enter your magnitude to at least one decimal place.)"


Solution

(a) The pitcher accelerates the baseball from rest to a final velocity of v_f = 16.5 m/s, so \Delta v=16.5 m/s, in a time interval of \Delta t = 181 ms=0.181 s. The acceleration of the ball in the horizontal direction (x-axis) is therefore

a_x =  \frac{\Delta v}{\Delta t}= \frac{16.5 m/s}{0.181 s}=91.2 m/s^2

And the distance covered by the ball during this time interval, before it is released, is:

S= \frac{1}{2} a_x (\Delta t)^2 = \frac{1}{2} (91.2 m/s^2)(0.181 s)^2=1.49 m

(b) For this part we need to consider also the weight of the ball, which is W=mg=2.28 N

From this, we find its mass: m= \frac{W}{g}= \frac{2.28 N}{9.81 m/s^2}=0.23 Kg

Now we can calculate the magnitude of the force the pitcher exerts on the ball. On the x-axis, we have

F_x = m a_x = (0.23 kg)(91.2 m/s^2)=20.98 N

We also know that the ball is moving straight horizontally. This means that the vertical component of the force exerted by the pitcher must counterbalance the weight of the ball (acting downward), in order to have a net force of zero along the y-axis, and so:

F_y=W=mg=2.28 N (upward)

So, the magnitude of the force is

F= \sqrt{F_x^2+F_y^2}=  \sqrt{(20.98N)^2+(2.28N)^2}=21.2 N

To find the direction, we should find the angle of F with respect to the horizontal. This is given by

\tan \alpha =  \frac{F_y}{F_x}= \frac{2.28 N}{20.98 N}=0.11

From which we find \alpha=6.2^{\circ}

7 0
1 year ago
Read 2 more answers
Little Tammy lines up to tackle Jackson to (unsuccessfully) prove the law of conservation of momentum. Tammy’s mass is 34.0 kg a
Naily [24]

Answer:

So Tammy must move with speed 4.76 m/s in opposite direction of Jackson

Explanation:

As per law of conservation of momentum we know that there is no external force on it

So here we can say that initial momentum of the system must be equal to the final momentum of the system

now we have

m_1v_1 + m_2v_2 = 0

final they both comes to rest so here we can say that final momentum must be zero

now we have

34 v + 54 (3 m/s) = 0

v = -4.76 m/s

8 0
1 year ago
Other questions:
  • A 10 kg mass rests on a table. What acceleration will be generated when a force of 20 N is applied and encounters a frictional f
    14·1 answer
  • When a light wave enters into a medium of different optical density,
    6·1 answer
  • A steady circular __________ light means drivers must stop at a marked stop line.
    7·2 answers
  • On an ice skating rink, a girl of mass 50 kg stands stationary, face to face with a boy of mass 80 kg. The children push off of
    15·2 answers
  • Suppose a plot of inverse wavelength vs frequency has slope equal to 0.119, what is the speed of sound traveling in the tube to
    5·1 answer
  • Suppose that, instead of the Coulomb force law, one finds experimentally that the force between any two charge q1 and q2 is Writ
    11·1 answer
  • One of the great dangers to mountain climbers is an avalanche, in which a large mass of snow and ice breaks loose and goes on an
    5·1 answer
  • Block 1 and Block 2 have the same mass, m, and are released from the top of two inclined planes of the same height making 30 deg
    8·1 answer
  • A sinusoidally oscillating current I ( t ) with an amplitude of 9.55 A and a frequency of 359 cycles per second is carried by a
    12·1 answer
  • hows a map of Olivia's trip to a coffee shop. She gets on her bike at Loomis and then rides south 0.9mi to Broadway. She turns e
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!