Answer:
Explanation:
area of square loop A = side²
= 8.4² x 10⁻⁴
A = 70.56 x 10⁻⁴ m²
when it is converted into rectangle , length = 14.7 , width = 2.1
area = length x width
= 14.7 x 2.1 x 10⁻⁴
= 30.87 x 10⁻⁴ m²
Let magnetic field be B
Change in flux = magnetic field x change in area
= B x ( 70.56 x 10⁻⁴ - 30.87 x 10⁻⁴ )
= 39.69 x 10⁻⁴ B
rate of change of flux = change in flux / time taken
= 39.69 x 10⁻⁴ B / 6.5 x 10⁻³
= 6.1 x 10⁻¹ B
emf induced = 6.1 x 10⁻¹ B
6.1 x 10⁻¹ B = 14.7 ( given )
B = 2.41 x 10
= 24.1 T
B ) magnetic flux is decreasing , so it needs to be increased as per Lenz's law . Hence current induced will be anticlockwise so that additional magnetic flux is induced out of the page.
Answer:
f_D = =3.24 N/m
Explanation:
data given
properties of air

k = 0.0288 W/m.K
WE KNOW THAT
Reynold's number is given as


= 1.941 *10^4
drag coffecient is given as

solving for f_D


Drag coffecient for smooth circular cylinder is 1.1
therefore Drag force is

f_D = =3.24 N/m
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
They cause an increase in temp of earths atmosphere or warming by absorbing solar energy. hope this helps
The random variable in this experiment is a Continuous random variable.
Option D
<u>Explanation</u>:
The continuous random variable is random variable where the data can take infinite variables. For example random variable is taken for measuring "speed of automobiles" on the highways. The radar instrument depicts time taken by automobile in particular what speed. They are the generalization of discrete random variables not the real numbers as a random data is created. It gives infinite sets of all possible outcomes. It is obvious that outcomes of the instrument depend on some "physical variables" those are not predictable as depends on the situation.