Answer:
1/2
Explanation:
We need to make a couple of considerations but basically the problem is solved through the conservation of energy.
I attached a diagram for the two surfaces and begin to make the necessary considerations.
Rough Surface,
We know that force is equal to,



Matching the two equation we have,


Applying energy conservation,





Frictionless surface




Given the description we apply energy conservation taking into account the inertia of a sphere. Then the relation between
and
is given by


The static friction exerted on the block by the incline is
.
The given parameters;
- <em>mass of the block, = M</em>
- <em>coefficient of static friction in section 1, = </em>
<em /> - <em>angle of inclination of the plane, = θ</em>
<em />
The normal force on the block is calculated as follows;
Fₙ = Mgcosθ
The static friction exerted on the block by the incline is calculated as follows;

Thus, the static friction exerted on the block by the incline is 
Learn more here:brainly.com/question/17237604
Answer:
The flux through the surface of the cube is 
Solution:
As per the question:
Edge of the cube, a = 8.0 cm = 
Volume Charge density, 
Now,
To calculate the electric flux:
(1)
where
= electric flux
= permittivity of free space
Volume Charge density for the given case is given by the formula:
(2)
Volume of cube, 
Thus

Thus from eqn (2), the total charge is given by:


Now, substitute the value of 'q' in eqn (1):

Answer:
160 Hz , 240 Hz , 400 Hz
Explanation:
Given that
Frequency of forth harmonic is 320 Hz.
Lets take fundamental frequency = f₁

f₁=80 Hz
Frequency of first harmonic = f₂
f₂=2 f₁
f₂ =2 x 80 = 160 Hz
Frequency of second harmonic = f₃
f₃= 3 f₁=3 x 80 = 240 Hz
Frequency of fifth harmonic = f₅
f₅= 5 f₁= 5 x 80 = 400 Hz
Three frequencies are as follows
160 Hz , 240 Hz , 400 Hz