Answer:
Column X. Tangential Speed
Column Y. radius
Explanation:
The equation for centripetal acceleration is
= v² / r
Where v is the tangential velocity of the body and the radius of curvature.
To analyze this equation you must place the tangential velocity in one column and in the other the turning radius
Let's check the answers
Column X. Tangential Speed
Column Y. radius
This is the correct answer.
Rw^2 = GmM/r^2
<span> Leads to
</span><span> w^2 r^3 = GM
</span><span> (2pi /T) ^2 r^3 = GM
</span><span> 4pi^2 r^3 = GM T^2
</span><span> r^3 = GM T^2 / 4pi^2
</span><span> Work out r^3 then r.
</span> T = 125 min = 125(60) = 7500 s
<span> R = 6.38E6 m
</span><span> m = 5.97E24 kg
</span><span> G = 6.673E-11
</span> r=<span>
8279791.78</span><span> m
Since r = radius R of Earth + height above urface,h
</span><span> h = r - R = </span><span>
8279791.78 - </span>6.38E6 = <span>
<span>1899791.78 m
h=</span></span><span>
<span>1899.79178 Km</span></span>
Answer:
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2
Explanation:
Acceleration is the change in velocity per unit time
a = ∆v/t
Given;
∆v = 50.0miles/hour - 0
∆v = 50.0miles/hours × 1609.344 metres/mile × 1/3600 seconds/hour
∆v = 22.352m/s
t = 2.22 s
So,
Acceleration a = ∆v/t = 22.352m/s ÷ 2.22s
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2
Answer:
a) I = 13.04 A
b) R = 8.82 ohms
c) 1291.87 kilocalories are generated an hour.
Explanation:
let P be the power of the heater, V be the voltage of the heater, I be the current of the heater, R be the resistance.
a) we know that:
P = I×V
I = P/V
= (1500)/(115)
= 13.04 A
Therefore, the current of the heater is 13.04 A
b) we now have voltage and current, according to Ohm's law:
R = V/I
= (115)/(13.04)
= 8.82 ohms
Therefore, the resistance of the heating coil is 8.82 ohms.
c) the number of kilocalories generated in one hour by the heater is just the energy the heater produces in one hour which is given by:
E = P×t
= (1500)(1×60×60)
= 5400000 J
since 1 calorie = 4.81 J
1 kilocalorie = 0.001 calories
E = 5400000/4.18 ≈ 1291866.029 calories ≈1291.87 kilocalories
Therefore, 1291.87 kilocalories are produced/generated in one hour.
Answer:
The body's rotational inertia is greater in layout position than in tucked position. Because the body remains airborne for roughly the same time interval in either position, the gymnast must have much greater kinetic energy in layout position to complete the backflip.
Explanation:
A gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position.
When the body is straight , its moment of rotational inertia is more than the case when he folds his body round. Hence rotational inertia ( moment of inertia x angular velocity ) is also greater. To achieve that inertia , there is need of greater imput of energy in the form of kinetic energy which requires greater effort.
So a gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position.