answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vagabundo [1.1K]
1 year ago
7

Determine the maximum weight of the bucket that the wire system can support so that no single wire develops a tension exceeding

100 lb.
Physics
1 answer:
stellarik [79]1 year ago
8 0
Let there be N number of wires.

Maximum tension a wire can withstand = 100 lb

so, Total tension N wires can withstand =  100 N

now, total tension in N wires = Maximum weight of bucket

100 N  = W

so, W = 100N

W is the weight of bucket and 100N is its maximum value.
You might be interested in
Mr. Chang's class participated in a science experiment where they placed three substances outside in the sunlight to determine w
Montano1993 [528]

Answer:

B or D but im pretty sure it is D

Explanation:

When molecules are left in the sun, it heats up. When molecules heat up, the begin to vibrate rapidly. The sun is not constant as it could get blocked by clouds, so it would, at times, slow down the movement of the molecules. The answer is most likely D.

7 0
2 years ago
Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12
Lesechka [4]

Answer:

Connect C₁ to C₃ in parallel; then connect C₂ to C₁ and C₂ in series. The voltage drop across C₁ the 2.0-μF capacitor will be approximately 2.76 volts.

-1.5\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-3.0\;\mu\text{F}-\end{array}]-.

Explanation:

Consider four possible cases.

<h3>Case A: 12.0 V.</h3>

-\begin{array}{c}-{\bf 2.0\;\mu\text{F}-}\\-1.5\;\mu\text{F}- \\-3.0\;\mu\text{F}-\end{array}-

In case all three capacitors are connected in parallel, the 2.0\;\mu\text{F} capacitor will be connected directed to the battery. The voltage drop will be at its maximum: 12 volts.

<h3>Case B: 5.54 V.</h3>

-3.0\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-1.5\;\mu\text{F}-\end{array}]-

In case the 2.0\;\mu\text{F} capacitor is connected in parallel with the 1.5\;\mu\text{F} capacitor, and the two capacitors in parallel is connected to the 3.0\;\mu\text{F} capacitor in series.

The effective capacitance of two capacitors in parallel is the sum of their capacitance: 2.0 + 1.5 = 3.5 μF.

The reciprocal of the effective capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. In other words, for the three capacitors combined,

\displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_3}+ \dfrac{1}{C_1+C_2}} = \frac{1}{\dfrac{1}{3.0}+\dfrac{1}{2.0+1.5}} = 1.62\;\mu\text{F}.

What will be the voltage across the 2.0 μF capacitor?

The charge stored in two capacitors in series is the same as the charge in each capacitor.

Q = C(\text{Effective}) \cdot V = 1.62\;\mu\text{F}\times 12\;\text{V} = 19.4\;\mu\text{C}.

Voltage is the same across two capacitors in parallel.As a result,

\displaystyle V_1 = V_2 = \frac{Q}{C_1+C_2} = \frac{19.4\;\mu\text{C}}{3.5\;\mu\text{F}} = 5.54\;\text{V}.

<h3>Case C: 2.76 V.</h3>

-1.5\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-3.0\;\mu\text{F}-\end{array}]-.

Similarly,

  • the effective capacitance of the two capacitors in parallel is 5.0 μF;
  • the effective capacitance of the three capacitors, combined: \displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_2}+ \dfrac{1}{C_1+C_3}} = \frac{1}{\dfrac{1}{1.5}+\dfrac{1}{2.0+3.0}} = 1.15\;\mu\text{F}.

Charge stored:

Q = C(\text{Effective}) \cdot V = 1.15\;\mu\text{F}\times 12\;\text{V} = 13.8\;\mu\text{C}.

Voltage:

\displaystyle V_1 = V_3 = \frac{Q}{C_1+C_3} = \frac{13.8\;\mu\text{C}}{5.0\;\mu\text{F}} = 2.76\;\text{V}.

<h3 /><h3>Case D: 4.00 V</h3>

-2.0\;\mu\text{F}-1.5\;\mu\text{F}-3.0\;\mu\text{F}-.

Connect all three capacitors in series.

\displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_1} + \dfrac{1}{C_2}+\dfrac{1}{C_3}} =\frac{1}{\dfrac{1}{2.0} + \dfrac{1}{1.5}+\dfrac{1}{3.0}} =0.667\;\mu\text{F}.

For each of the three capacitors:

Q = C(\text{Effective})\cdot V = 0.667\;\mu\text{F} \times 12\;\text{V} = 8.00\;\mu\text{C}.

For the 2.0\;\mu\text{F} capacitor:

\displaystyle V_1=\frac{Q}{C_1} = \frac{8.00\;\mu\text{C}}{2.0\;\mu\text{F}} = 4.0\;\text{V}.

6 0
1 year ago
Suppose you see two main-sequence stars of the exact same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by
katrin2010 [14]

Options:

A. The luminosity of Star 1 is a factor of 100 less than the luminosity of Star 2.

B. Star 1 is 100 times more distant than Star 2.

C. Without first knowing the distances to these stars, you cannot draw any conclusions about how their true luminosities compare to each other.

D. Star 1 is 10 times more distant than Star 2.

E. Star 1 is 100 times nearer than Star 2.

Answer:

D. Star 1 is 10 times more distant than star 2

Explanation:

For two stars of identical size and temperature, the closer one to us will appear brighter. The relationship between the distance and luminosity of stars is an inverse- square relationship.

Luminosity, L = 1/r²

Where r is the distance of the star to the earth

Since star 1 is dimmer in brightness than star 2 by a factor of 100,

L₁/L₂ = 1/100

i.e. L₁ = 1, L₂=100

L₁ = 1/r₁² ............(1)

1 =  1/r₁²

L₂ = 1/r₂²

100 =  1/r₂² .........(2)

divide equation (2) by equation (1)

100/1 = ( 1/r₂² )/ (1/r₁²)

100 = (r₁/r₂)²

r₁/r₂ = √100

r₁/r₂ = 10

r₁ = 10r₂

3 0
2 years ago
suppose that 273 g of one of the substances listed above displaces 26 mL of water. What is the substance?
guajiro [1.7K]
<span>The unknown substance is silver. I don't see a list of available substances, but let's see if there's something reasonable available that will match. First, let's calculate the density of the unknown substance. Density is mass per volume, so 273 g / 26 mL = 10.5 g/mL Looking up a list of elements sorted by density, I see the following: 10.07 Actinium 10.22 Molybdenum 10.5 Silver 11.35 Lead And silver at 10.5 g/ml is a very nice match for the unknown substances' density of 10.5 g/ml.</span>
6 0
2 years ago
Read 2 more answers
A fisherman casts his bait toward the river at an angle of 25° above the horizontal. As the line unravels, he notices that the b
Butoxors [25]

Answer:

v_{o}=18m/s

Explanation:

According to the exercise we know the angle which the bait was released and its maximum height

\beta =25\\y=2.9m

To find the initial y-component of velocity we need to do the following steps:

v_{y}^{2} =v_{oy}^{2}+2g(y-y_{o})

At maximum height the y-component of velocity is 0 and from the exercise we know that the initial y position is 0

0=v_{oy}^{2}-2(9.8m/s^2)(2.9m)

v_{oy}=\sqrt{2(9.8m/s^{2} )(2.9m)} =7.53m/s

Since the bait is released at 25º

v_{oy}=v_{o}sin(25)

v_{o}=\frac{7.53m/s}{sin(25)}=18m/s

6 0
2 years ago
Other questions:
  • The three point charges +4.0 μC, -5.0 μC, and -9.0 μC are placed on the x-axis at the points x = 0 cm, x = 40 cm, and x = 120 cm
    5·2 answers
  • If a set of displacement vectors laid head to tail make a closed polygon, what is the resultant vector?
    8·1 answer
  • In very cold weather, a significant mechanism for heat loss by the human body is energy expended in warming the air taken into t
    11·1 answer
  • What is the thickness required of a masonry wall having thermal conductivity 0.75 W/m K if the heat rate is to be 80% of the hea
    5·1 answer
  • One of the main factors driving improvements in the cost and complexity of integrated circuits (ICs) is improvements in photolit
    6·1 answer
  • Claudia throws a baseball to her dog. Which free-body diagram shows the
    15·1 answer
  • A rocket train car that is 30 m long is traveling from Los Angeles to New York at v=0.5c when a light at the center of the car f
    11·1 answer
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    8·1 answer
  • An Object moving at a velocity of 30 m/s slows to a stop in 7 seconds. What was its acceleration
    12·1 answer
  • A helicopter pulls upward by means of a rope on a 250 kg crate to lift it UNIFORMLY. What is the net force on the crate?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!