Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Answer:
The mass will be "8.86 lb".
Explanation:
The given values are:
Force
= 70,000 mi/h
Speed
= 7900 mi/h
On applying the Law of momentum, we get
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
Answer:
On the other hand, Florida's Gulf Coast experiences the greatest number of thunderstorms out of any U.S. location. These types of storms occur on average 130 days per year in Florida.
Explanation:
Mass of the Earth is equal to,

Any number can be written in the form of scientific notation as :

m is the real number
n is any integer
Mass of the earth can be written in the form of scientific notation as :

Here,
m = 5.97
n = 24
Hence, this is the required solution.