answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
1 year ago
14

You have found a treasure map that directs you to start at a hollow tree, walk 300 meters directly north, turn and walk 500 mete

rs northeast, and then 400 meters at 60° south of east. Since you have been educated about vectors, you decide to save yourself some walking and go directly to the treasure in a straight line from the hollow tree. How far do you have to go, and in which direction?
Physics
1 answer:
Dmitry_Shevchenko [17]1 year ago
7 0

Answer:633 m

Explanation:

First we have moved 300 m in North

let say it as point a and its vector is 300\hat{j}

after that we have moved 500 m northeast

let say it as point b

therefore position of b with respect to a is

r_{ba}=500cos(45)\hat{i}+500sin(45)\hat{j}

Therefore position of b w.r.t to origin is

r_b=r_a+r_{ba}

r_b=300\hat{j}+500cos(45)\hat{i}+500sin(45)\hat{j}

r_b=500cos(45)\hat{i}+\left [ 250\sqrt{2}+300\right ]\hat{j}

after this we moved 400 m 60^{\circ} south of east i.e. 60^{\circ} below from positive x axis

let say it as c

r_{cb}=400cos(60)\hat{i}-400sin(60)\hat{j}

r_c=r_{b}+r_{cb}

r_c=500cos(45)\hat{i}+\left [ 250\sqrt{2}+300\right ]\hat{j}+400cos(60)\hat{i}-400sin(60)\hat{j}

r_c=\left [ 250\sqrt{2}+200\right ]\hat{i}+\left [ 250\sqrt{2}+300-200\sqrt{3}\right ]\hat{j}

magnitude is \sqrt{\left [ 250\sqrt{2}+200\right ]^2+\left [ 250\sqrt{2}+300-200\sqrt{3}\right ]^2}

=633.052

for directiontan\theta =\frac{250\sqrt{2}+300-200\sqrt{3}}{250\sqrt{2}+200}

tan\theta =\frac{307.139}{553.553}

\theta =29.021^{\circ} with x -axis

You might be interested in
A truck collides with a car on horizontal ground. At one moment during the collision, the magnitude of the acceleration of the t
Mice21 [21]

Answer:

The magnitude of the acceleration of the car is 35.53 m/s²

Explanation:

Given;

acceleration of the truck, a_t = 12.7 m/s²

mass of the truck, m_t = 2490 kg

mass of the car, m_c = 890 kg

let the acceleration of the car at the moment they collided = a_c

Apply Newton's third law of motion;

Magnitude of force exerted by the truck = Magnitude of force exerted by the car.

The force exerted by the car occurs in the opposite direction.

F_c = -F_t\\\\m_ca_c = -m_t a_t\\\\a_c =- \frac{m_ta_t}{m_c} \\\\a_c = -\frac{2490 \times 12.7}{890} \\\\a_c = - 35.53 \ m/s^2

Therefore, the magnitude of the acceleration of the car is 35.53 m/s²

3 0
2 years ago
A small glass bead charged to 5.0 nCnC is in the plane that bisects a thin, uniformly charged, 10-cmcm-long glass rod and is 4.0
GuDViN [60]

Answer:

The total charge on the rod is 47.8 nC.

Explanation:

Given that,

Charge = 5.0 nC

Length of glass rod= 10 cm

Force = 840 μN

Distance = 4.0 cm

The electric field intensity due to a uniformly charged rod of length L at a distance x on its perpendicular bisector

We need to calculate the electric field

Using formula of electric field intensity

E=\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

Where, Q = charge on the rod

The force is on the charged bead of charge q placed in the electric field of field strength E

Using formula of force

F=qE

Put the value into the formula

F=q\times\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

We need to calculate the total charge on the rod

Q=\dfrac{Fx\sqrt{(\dfrac{L}{2})^2+x^2}}{kq}

Put the value into the formula

Q=\dfrac{840\times10^{-6}\times4.0\times10^{-2}\sqrt{(\dfrac{10.0\times10^{-2}}{2})^2+(4.0\times10^{-2})^2}}{9\times10^{9}\times5.0\times10^{-9}}

Q=47.8\times10^{-9}\ C

Q=47.8\ nC

Hence, The total charge on the rod is 47.8 nC.

6 0
2 years ago
A 202 kg bumper car moving right at 8.50 m/s collides with a 355 kg car at rest. Afterwards, the 355 kg car moves right at 5.80
Sidana [21]

Explanation:

It is given that,

Mass of bumper car, m₁ = 202 kg

Initial speed of the bumper car, u₁ = 8.5 m/s

Mass of the other car, m₂ = 355 kg

Initial velocity of the other car is 0 as it at rest, u₂ = 0

Final velocity of the other car after collision, v₂ = 5.8 m/s

Let p₁ is momentum of of 202 kg car, p₁ = m₁v₁

Using the conservation of linear momentum as :

m_1u_1+m_2u_2=m_1v_1+m_2v_2

202\ kg\times 8.5\ m/s+355\ kg\times 0=m_1v_1+355\ kg\times 5.8\ m/s

p₁ = m₁v₁ = -342 kg-m/s

So, the momentum of the 202 kg car afterwards is 342 kg-m/s. Hence, this is the required solution.

7 0
2 years ago
A vertical cylinder is divided into two parts by a movable piston of mass m. The piston and cylinder system is well insulated (t
Mekhanik [1.2K]

Answer:

Final temperature will be 438.076 K

Explanation:

We have given temperature T_1=323K

Volume V_1=V\ and\ V_2=\frac{V}{2}

As there is no heat transfer so this is an adiabatic process

For and adiabatic process TV^{\gamma -1}=constant

Here \gamma =1.4

So T_1V_1^{\gamma -1}=T_2V_2^{\gamma -1}

T_2=\left ( \frac{V_1}{V_2} \right )^{\gamma -1}\times T_1

T_2=\left ( \frac{V}{\frac{V}{2}} \right )^{1.4 -1}\times 332=2^{0.4}\times 332=438.076K

4 0
2 years ago
What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade?
kaheart [24]

Incomplete question.The complete question is here

What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade? The outer edge of the blade is 21 cm from the center of the blade, and the mass of the outer portion is 7.7 g. Even though the blade is 21cm long, the last 2cm should be treated as if they were at a point 20cm from the center of rotation.

Answer:

F= 0.034 N

Explanation:

Given Data

Outer=2 cm

Edge of blade=21 cm

Mass=7.7 g

Length of blade=21 cm

The last 2cm is treated as if they were at a point 20cm from the center of rotation

To Find

Force=?

Solution

Convert the given frequency to angular frequency

ω = 45 rpm * (2*pi rad / 1 rev) * (1 min / 60 s)

ω= 3/2*π rad/sec

Now to find centripetal force.

F = m×v²/r

F= m×ω²×r

Put the data

F = 0.0077 kg × (3/2×π rad/sec )²× 0.20 m

F= 0.034 N

3 0
1 year ago
Other questions:
  • A plane traveled west for 4.0 hours and covered a distance of 4,400 kilometers. What was its velocity? 18,000 km/hr 1,800 km/hr,
    12·2 answers
  • Step 8: Observe How Changes in the Speed of the Bottle Affect Beanbag Height
    7·2 answers
  • A 0.80-μm-diameter oil droplet is observed between two parallel electrodes spaced 11 mm apart. The droplet hangs motionless if t
    13·1 answer
  • The velocity of a an object in linear motion changes from +25 meters per second to +15 meters per second in 2.0 seconds.
    9·1 answer
  • A battleship simultaneously fires two shells toward two identical enemy ships. One shell hits ship A, which is close by, and the
    11·1 answer
  • A solid steel cylinder is standing (on one of its ends) vertically on the floor. The length of the cylinder is 3.2 m and its rad
    13·1 answer
  • One beaker contains 100 mL of pure water and second beaker contains 100 mL of seawater. The two beakers are left side by side on
    12·2 answers
  • he first excited state of the helium atom lies at an energy 19.82 eV above the ground state. If this excited state is three-fold
    15·1 answer
  • An astronaut drops a feather from 1.2 m above
    5·1 answer
  • The2 archer uses a force of 120 N. The force acts on an area of 0.5 cm2 on the archer's fingers. . Calculate the pressure on the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!