answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cricket20 [7]
2 years ago
5

Which of the following statements characterizing types of waves are true?

Physics
1 answer:
Tasya [4]2 years ago
7 0

Answer:

a and b.

Explanation:

In general  types of wave

1. Transverse wave  :

    In these waves particle are vibrate perpendicular to motion of waves.

 Ex : Electromagnetic wave , Radio wave .

2. Longitudinal wave :

   In these waves particle are vibrate along the motion of waves.

 Ex : Sound wave

Mechanical wave  :

1 .These are transverse wave or Longitudinal wave or combination of them .

2.These waves required medium for propagation.

3. The particle are vibrate perpendicular to motion of waves.

So the option a and b are correct.

You might be interested in
What is the value of g on the surface of Saturn? Assume M-Saturn = 5.68×10^26 kg and R-Saturn = 5.82×10^7 m.Choose the appropria
Likurg_2 [28]

Answer:

Approximately \rm 11.2 \; N \cdot kg^{-1} at that distance from the center of the planet.

Option A) The low value of g near the cloud top of Saturn is possible because of the low density of the planet.

Explanation:

The value of g on a planet measures the size of gravity on an object for each unit of its mass. The equation for gravity is:

\displaystyle \frac{G \cdot M \cdot m}{R^2},

where

  • G \approx 6.67\times 10^{-11}\; \rm N \cdot kg^{-2} \cdot m^2.
  • M is the mass of the planet, and
  • m is the mass of the object.

To find an equation for g, divide the equation for gravity by the mass of the object:

\displaystyle g = \left.\frac{G \cdot M \cdot m}{R^2} \right/\frac{1}{m} = \frac{G \cdot M}{R^2}.

In this case,

  • M = 5.68\times 10^{26}\; \rm kg, and
  • R = 5.82 \times 10^7\; \rm m.

Calculate g based on these values:

\begin{aligned} g &= \frac{G \cdot M}{R^2}\cr &= \frac{6.67\times 10^{-11}\; \rm N \cdot kg^{-2} \cdot m^2\times 5.68\times 10^{26}\; \rm kg}{\left(5.82\times 10^7\; \rm m\right)^2} \cr &\approx 11.2\; \rm N\cdot kg^{-1} \end{aligned}.

Saturn is a gas giant. Most of its volume was filled with gas. In comparison, the earth is a rocky planet. Most of its volume was filled with solid and molten rocks. As a result, the average density of the earth would be greater than the average density of Saturn.

Refer to the equation for g:

\displaystyle g = \frac{G \cdot M}{R^2}.

The mass of the planet is in the numerator. If two planets are of the same size, g would be greater at the surface of the more massive planet.

On the other hand, if the mass of the planet is large while its density is small, its radius also needs to be very large. Since R is in the denominator of g, increasing the value of R while keeping M constant would reduce the value of g. That explains why the value of g near the "surface" (cloud tops) of Saturn is about the same as that on the surface of the earth (approximately 9.81\; \rm N \cdot kg^{-1}.

As a side note, 5.82\times 10^7\rm \; m likely refers to the distance from the center of Saturn to its cloud tops. Hence, it would be more appropriate to say that the value of g near the cloud tops of Saturn is approximately \rm 11.2 \; N \cdot kg^{-1}.

6 0
2 years ago
Why is the following situation impossible? Two identical dust particles of mass 1.00 µg are floating in empty space, far from an
Igoryamba

Answer:

This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

a=\frac{F}{m}

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.

4 0
2 years ago
when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
marysya [2.9K]

Answer:

From the initial height h

Explanation:

When a material or substance is drop from a height h, it possesses potential energy, immediately it is dropped from that height, the potential energy is gradually converted to kinetic energy, it gets to a point where the potential energy equals the kinetic energy, as the material touches the ground, all potential energy has been converted to kinetic energy already

6 0
2 years ago
Three couples and two single individuals have been invited to an investment seminar and have agreed to attend. Suppose the proba
lions [1.4K]

Answer:

a) Probability mass function of x

x P(X=x)

0 0.0602

1 0.0908

2 0.1700

3 0.2050

4 0.1800

5 0.1550

6 0.0843

7 0.0390

8 0.0147

b) Cumulative Distribution function of X

x F(x)

0 0.0602

1 0.1510

2 0.3210

3 0.5260

4 0.7060

5 0.8610

6 0.9453

7 0.9843

8 1.0000

The cumulative distribution function gives 1.0000 as it should.

Explanation:

Probability of arriving late = 0.43

Probability of coming late = 0.57

Let's start with the probability P(X=0) that exactly 0 people arrive late, the probability P(X=1) that exactly 1 person arrives late, the probability P(X=2) that exactly 2 people arrive late, and so on up to the probability P(X=8) that 8 people arrive late.

Interpretation(s) of P(X=0)

The two singles must arrive on time, and the three couples also must. It follows that P(X=0) = (0.57)⁵ = 0.0602

Interpretation(s) of P(X=1)

Exactly 1 person, a single, must arrive late, and all the rest must arrive on time. The late single can be chosen in 2 ways. The probabiliy that (s)he arrives late is 0.43.

The probability that the other single and the three couples arrive on time is (0.57)⁴

It follows that

P(X=1) = (2)(0.43)(0.57)⁴ = 0.0908

Interpretation(s) of P(X=2)

Two late can happen in two different ways. Either (i) the two singles are late, and the couples are on time or (ii) the singles are on time but one couple is late.

(i) The probability that the two singles are late, but the couples are not is (0.43)²(0.57)³

(ii) The probability that the two singles are on time is (0.57)²

Given that the singles are on time, the late couple can be chosen in 3 ways. The probability that it is late is 0.43 and the probability the other two couples are on time is (0.57)².

So the probability of (ii) is (0.57)²(3)(0.43)(0.57)² which looks better as (3)(0.43)(0.57)⁴ It follows that

P(X=2) = (0.43)²(0.57)³ + (3)(0.43)(0.57)⁴ = 0.0342 + 0.136 = 0.1700

Interpretations of P(X=3).

Here a single must arrive late, and also a couple. The late single can be chosen in 2 ways. The probability the person is late but the other single is not is (0.43)(0.57).

The late couple can be chosen in 3 ways. The probability one couple is late and the other two couples are not is (0.43)(0.57)². Putting things together, we find that

P(X=3) = (2)(3)(0.43)²(0.57)³ = 0.2050

Interpretation(s) P(X=4)

Since we either (i) have the two singles and one couple late, or (ii) two couples late. So the calculation will break up into two cases.

(i) Two singles and one couple late

Two singles' probability of being late = (0.43)² and One couple being late can be done in 3 ways, so its probability = 3(0.43)(0.57)²

(ii) Two couples late, one couple and two singles early

This can be done in only 3 ways, and its probability is 2(0.57)³(0.43)²

P(X=4) = (3)(0.43)³(0.57)² + (3)(0.57)³(0.43)² = 0.0775 + 0.103 = 0.1800

Interpretations of P(X=5)

For 5 people to be late, it has to be two couples and 1 single person.

For couples, The two late couples can be picked in 3 ways. Probability is 3(0.43)²(0.57)

The late single person can be picked in two ways too, 2(0.43)(0.57)

P(X=5) = 2(3)(0.43)³(0.57)² = 0.1550

Interpretations of P(X=6)

For 6 people to be late, we have either (i) the three couples are late or (ii) two couples and the two singles.

(i) Three couples late with two singles on time = (0.43)³(0.57)²

(ii) Two couples and two singles late

Two couples can be selected in 3 ways, so probability = 3(0.43)²(0.57)(0.43)²

P(X=6) = (0.43)³(0.57)² + 3(0.43)⁴(0.57) = 0.0258 + 0.0585 = 0.0843

Interpretation(s) of P(X=7)

For 7 people to be late, it has to be all three couples and only one single (which can be picked in two ways)

P(X=7) = 2(0.57)(0.43)⁴ = 0.0390

Interpretations of P(X=8)

Everybody had to be late

P(X=8) = (0.43)⁵ = 0.0147

6 0
2 years ago
Suppose you are designing an amplifier and loudspeaker system to use at a rock concert. You want to make it as loud as possible.
OverLord2011 [107]

Answer is given below

Explanation:

  • Audio power amplifiers are found in all types of sound systems, including sound reinforcement, public address and home audio systems, as well as musical instrument amplifiers such as guitar amplifiers.
  • This is the last electronic step in the general audio playback series before sending the signal to the loudspeaker.  So when we want maximum volume or loud sound, we have to get it with maximum output and high input and low output impedance
4 0
2 years ago
Other questions:
  • A pressure cooker is a pot whose lid can be tightly sealed to prevent gas from entering or escaping. even without knowing how bi
    14·1 answer
  • When a car goes around a circular curve on a horizontal road at constant speed, what force causes it to follow the circular path
    7·1 answer
  • In a certain region of space, a uniform electric field has a magnitude of 4.30 x 104 n/c and points in the positive x direction.
    8·1 answer
  • A crate is sliding down an inclined ramp at a constant speed of 0.55 m/s. The vector sum of all the forces acting on this crate
    5·1 answer
  • The box leaves position x=0 with speed v0. The box is slowed by a constant frictional force until it comes to rest at position x
    12·1 answer
  • A glider is gliding through the air at a height of 416 meters with a speed of 45.2 m/s. The glider dives to a height of 278 mete
    15·1 answer
  • Snowboarder Jump—Energy and Momentum
    9·1 answer
  • An airplane pilot wishes to fly directly westward. According to the weather bureau, a wind of 75.0 km/hour is blowing southward.
    15·1 answer
  • Two electrons, each with mass mmm and charge qqq, are released from positions very far from each other. With respect to a certai
    9·1 answer
  • Usually, it is observed that climates in coastal regions are moderate as compared to climates in the interiors of continents. Wh
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!