Answer:
e) electrons are transferred from the rod to the silk.
Explanation:
An initially neutral glass rod contains equal number of electron and proton.
If the rod becomes positively charged after being rubbed with silk, then the rod must have lost some its electron to the silk since electrons are more mobile than protons, leaving the rod with excess positive charge (protons), and the silk will be negatively charged (excess electron).
Thus, the rod becomes positively charged by transfer of electrons from rod to the silk.
e) electrons are transferred from the rod to the silk.
Answer:
The tension in the string is quadrupled i.e. increased by a factor of 4.
Explanation:
The tension in the string is the centripetal force. This force is given by

m is the mass, v is the velocity and r is the radius.
It follows that
, provided m and r are constant.
When v is doubled, the new force,
, is

Hence, the tension in the string is quadrupled.
Since Alejandro hopes to combine the findings from the collected studies and draw a general conclusion regarding the subject, he is using statistical tool of inference.
There are basically 2 types of statistical tools:
- Descriptive statistical tools
- Inferential statistical tools
Descriptive tools are used to describe data. They include the use of tables, graphs, measures of dispersion, measures of central tendencies, etc.
Inferential tools are used to deduce conclusions from data. They include measures of significant differences, probability, correlation and regression, etc.
In this case, Alejandro would need to subject the data collected from the 35 studies to inferential statistical analysis tools in order to be able to make relevant conclusions.
More on types of statistics can be found here: brainly.com/question/13335435
Answer:
(A) v = 14.8m/s
Explanation:
(A) V = sqrt(k/m) × A = sqrt(22/0.1) × 0.29 =14.8m/s.
Answer:

Explanation:
GIVEN,
mass of electron = 9.1 x 10 kg
Radius = 5.3 x 10 m
pulling force = 8.2 x 10 N
Required centripetal for (Fe) for circular motion will be provided with electrical force (F)




ω = 4.12 x 10¹⁶ rad/s

