Answer:

Explanation:
Given that
J(r) = Br
We know that area of small element
dA = 2 π dr
I = J A
dI = J dA
Now by putting the values
dI = B r . 2 π dr
dI= 2π Br² dr
Now by integrating above equation


Given that
B= 2.35 x 10⁵ A/m³
r₁ = 2 mm
r₂ = 2+ 0.0115 mm
r₂ = 2.0115 mm

By putting the values


Answer:
Explanation:
i = Imax sin2πft
given i = 180 , Imax = 200 , f = 50 , t = ?
Put the give values in the equation above
180 = 200 sin 2πft
sin 2πft = .9
sin2π x 50t = .9
sin 360 x 50 t = sin ( 360n + 64 )
360 x 50 t = 360n + 64
360 x 50 t = 64 , ( putting n = 0 for least value of t )
18000 t = 64
t = 3.55 ms .
Answer:
Picasso’s artistic achievements were in large part the result of his contribution to help bring the Nazi' devastating casual bombing and Spanish civil war in Guernica to the world's attention through his paintings.
If you drop a <span>6.0x10^-2 kg ball from height of 1.0m above hard flat surface, and a</span>fter the ball had bounce off the flat surface, the kinetic energy of the ball would be mgh - 0.14 = 0.45.
Answer:
5.843 m
Explanation:
suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.
lets consider that horizontal motion
distance = speed * time
time = 40/ 37 = 1.081 s
arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.
applying motion equation
(assume g = 10 m/s²)

Arrow misses the target by 5.843m ig the arrow us split horizontally